在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?本文是细心的小编帮家人们整编的2024年平行线的判定教学反思优秀8篇,欢迎借鉴,希望大家能够喜欢。
本节课是《4.2平行四边形的判定2》,前面已经有三个判定定理的学习,本节课只是在原有基础上补充多一个判定定理。从孩子作业反映上来看,孩子们对判定定理的选择与应用做得并非太好,特别是对判定定理的选择上,经常是使用自己较熟悉的一种,结果有时使到整个证明过程呈得繁琐。
因此,本节课的教学环节我做了这样的设计:
第一环节:课前阅读:一方面是复习旧知,另一方面是使学生尽快进入课堂教学;
第二环节,课前小测:五道基础性题目检测学生之前的与上节课所学的。知识;
第三环节,定理的选择:一道判断有几个平行四边形的题目,判断过程中让学生选择适当的定理来证明;
第四环节,探索两条对边分别相等的四边形是平行四边形的判定定理;
第五环节,课本上的随堂练习巩固知识点;
第六环节,辨别两个判定定理的易混点:一个是一组对边平行,另一组对边相等,另一个是两条边相等,另外两条边也相等;
第七环节,练习:三道练习题。其中有时间时最后一题进行适当的变式。
教学任务基本完成,就是最后一环节当中变式题目没有讲,不过那个本来就是多预备的。
本节课中虽然说教学任务基本完成。但有些环节中的处理做得不是很好。课前阅读与课前小测方面是比较满意的,能做得多关注差生,尽可能地减少差生面,提高孩子的学习信心。但是,第三环节中定理的选择的练习中,出发点是好,但花费的时间较多,导致新课讲授的时间较少。第四环节探索判定定理时,实验题安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;第六环节是找学生板演时应有所挑选,课堂中选了一个基础好与一个基础差的学生,差些的学生主要看着基础好的学生来完成,没太大意义;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给孩子思考。另外,方法性的指导也略显不足。
作为一个刚毕业一年的老师,经验性的不足也有一定关系。为了更快地完善自己的教学,近期主要注意以下几个方面:
1、抓好课前的准备。从严做起,重在落实。对学生课前练习本、课本等课堂需要用到的东西都要让学生养成习惯做好准备。
2、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
3、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。
4、在课堂上放心地让学生去尝试错误,多些让学生自主思考。
5、对学生的学习与做题多些方法性的指导。
本节课的思路是:先创设问题情境,引入新课,然后展示学习目标,通过小组活动引导学生得出平行线的判定定理一,在定理一的基础上衍生出定理二三。在这一过程中注重培养学生的思维,利用题型变换等方式提高学生的逻辑思维能力。在培养灵活思维的同时注意解题“通法”这一不变因素,引导学生解决问题。然后通过联系生活强化学生用平行线的判定定理解决实际问题,使学生体验到数学来源于生活又运用到生活中去。
本节课结束后,我认真的批改了本节课的作业,根据实际情况,觉得学生掌握情况不是很好,出现了一些不足。为了今后能更好的开展教学工作,完成教学任务,总结以下几点,以提高今后的教育教学水平:
亮点一:通过动手操作,使学生更直观的感受平行线的判定定理,体验到探索与获得成功的。喜悦。
亮点二:通过小组合作,增强了合作意识。
亮点三:通过类比和变式教学,锻炼学生的归纳总结和迁移的能力。
亮点四:大部分学生积极性被调动起来,学习中下等的学生积极参与课堂学实习中去。
不足与措施:
1、对学生的情况个人估计过高。本节课设计的内容较多,知识点练习复杂,导致在本节课的时间感觉比较紧,需要在自习课进一步学习。
2、在教学中平行线的判定学生虽然已应掌握但在运用时不灵活,还需要在课下继续练习。
3、学生学习的积极性较充分地调动起来。还有少部分学生学习比较被动,平行线的判定记忆不够熟练运用不灵活。应该让学生更主动、积极地学好数学知识,使每一个学生在数学课堂都能获得提升的机会,每天进步一点点,逐步完善自我,攀登数学知识的高峰。
1、对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定与性质进行了灵活的运用。注重学生的自己分析,启发学生用不同方法解决问题。探索直线平行的条件,实际上是“平行线的判定”老内容新教法,我的体会最深之一就是怎样让学生自主探索直线平行的条件,这与以前的教学方法完全不同,我感觉这节课成功之处是:引导学生参与整个探索过程使学生真正理解和掌握“同位角”的概念,并能够用自己的语言概括出“同位角相等,两直线平行”这一重要结论。
2、课堂上在与学生的对话和让学生回答问题时,有意识地锻炼学生使用规范性的几何语言。
3、注重由学生从临摹书写到自主书写,锻炼学生的动手能力。
这节课还需改进的是:
1、课堂的应变能力还需提高。对例三的研究时间过长,使后一阶段学生的思考时间较紧,由于时间关系,学生没有充分思考,虽然学生踊跃举手,但毕竟其他学生没有参与的机会,在今后备课中,继续要充分考虑到这一点。让学生在课堂上有更多的自主学习时间,让学生在实践活动中锻炼成长。
2、板书还要精心设计。
3、没有兼顾到学生的差异,如果在分析的环节不同层次的学生能够同伴互助,那么课堂的。实效性将更充分体现。
4、认真备课。备知识:熟悉这节课的内容以及有关知识。备学生:既要因材施教更要因生施教,上好一节课不能只看老师在规定的时间完成了教学内容更重要的是学生通过这节课学会了什么,也就是不要看老师按时(45分钟)教了什么而是看学生到时学会了什么。学生学会了知识,掌握了知识才能说老师这节课是成功有效的教学。
反思是为了促进发展,反思是一种有思考的学习,是一种有理性的总结,可以提高教师教学教研的水平。今后每一节普通的课,都是我不断反省、审视自己,不断完善自己基本技能、提高教学水平的载体。
有幸听到陈老师的课,对于《直线与平面平行的判定定理》这堂课,我有以下的感想:
陈老师最开始上课利用多媒体投影出生活当中的实际例子,比如说旗杆与地面、跑道上的白线与地面和日光灯与天花板等,这样学生应该会马上回忆起直线与平面的三种位置关系,这样给出了直观的有实际模型,学生也就更容易理解这三种关系的图形语言。
新课标提倡数学教学应当注意创设生活情境,使数学学习更贴近学生,在数学课堂学习中,精心创设问题情景,诱发学生思维的积极性,在数学问题情景中,新的需要和学生原有的数学水平之间产生了认知冲突,这种认知冲突能诱发学生数学思维的积极性。因此,合适的问题情景,成为诱发和促进学生思维发展的动力因素。在以后的教学中,要注意教材各部分内容的。衔接,不仅要分析教材,更要分析学生的实际情况。
在直线与平面平行的性质定理讲解设计中,陈老师要求学生会用三种语言(文字、图形、符号)来表达这个判定定理,并和学生一起去分析定理中的三个条件。讲解后,也一直在强调判定定理中的三个条件都是不能少的,缺少一个结论均不成立,这一点非常好。
当然,本节课的教学还是达到了预期目标。学生基本上能知道直线与平面平行的判定定理的内容,会注意到定理中的三个条件一个都不能少。通过例题的讲解,学生知道了证明直线与平面平行的方法,一种是利用定义,一种是运用判定定理,而利用判定定理关键是要去平面内去找一条直线与已知直线平行。
本节课探索三角形全等的判定方法一,是后面几种判定方法的基础,也是本章的重点也是难点。教材看似简单,仔细研究后才发现对学生来说有些困难,处理不好可能难以成功。备课时发现本节课的难点就是处理从确定一个三角形到得到三角形全等的判定方法这个环节,让学生动手操作和学生相互交流验证很好地解决了问题,圆满地完成本节课的教学任务。
反思整个过程,我觉得做得较为成功的。有以下几个方面:
1、教学设计整体化,内容生活化。在课题的引入方面,让学生动手做、裁剪三角形。既提问复习了全等三角形的定义,又很好的过渡到确定一个三角形需要哪些条件的问题上来。把知识不知不觉地体现出来,学得自然新鲜。数学学习来源于生活实际,学生学得轻松有趣。
2、把课堂充分地让给了学生。我和学生做了些课前交流,临上课前我先对他们提了四个要求:认真听讲,积极思考,大胆尝试,踊跃发言。其实,这是一个调动学生积极性,同时也是激励彼此的过程。在上课过程中,我尽量不做过多的讲解,通过引导让学生发现问题并通过动手操作、交流讨论来解决问题。
3、在难点的突破上取得了成功。上这堂课前,我一直担心学生在得出三角形全等的判定方法上出现理解困难。课堂上我通过让学生动手制作一个两边长分别为6cm和8cm,并要求相互之间互相比较发现制作的三角形形状和大小完全相同,即三角形都全等,最后同学们都不约而同地得出了三角形全等的判定方法。但也有几处是值得思考和在以后教学中应该改进的地方:
(1)、在课堂上优等生急着演示、发言,后进生却成了观众和听众。如何做到面向全体,人人学有所得,也值得我们数学教师来探讨。
(2)、课堂学生的操作应努力做到学生自发生成的,而不是老师说“你们比较下三角形的形状和大小”,应换为自发地比较更好。
(3)、教学细节需进一步改进,教学时应多关注学生,在学习新知后,虽然大部分的学生都掌握了,但有少数后进生仍然是不理解。
(一)教材的地位与作用
本节内容是《普通高中课程标准数学教科书》(北师大版)数学(必修1)第四章第一节《函数与方程》的第一课时。 这节课是在学生学习了函数的图像、性质的基础上,进一步研究函数与其他数学知识的有机联系。这里集中研究的是利用函数特征判定方程实数解的存在,它是下一步学习利用“二分法”求方程近似解的依据和基础。
(二)教材内容分析
本节课的主要内容有函数零点的概念、函数零点存在的判定。函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的。联系性,而函数的零点就是其中的一个链接点,它从不同的角度,将函数与方程有机的联系在一起。本节是函数应用的第一课,因此教学时应站在函数应用的高度,从函数与方程的关系的角度来引入较为适宜。
由于学生在第二章已经学习了函数的有关概念、性质及图像,有一定的知识基础。同时,学生也具备了一些函数应用的意识,但应用意识还是相对薄弱,创造力不强,所以在授课时注重从学生已有的认知水平出发,注重引导、启发和探究以符合学生的心理发展特点,从而促进思维能力的进一步发展。
1、依据教学大纲及课标要求,准确把握本节内容在教材中的地位和作用,教学时能站在函数应用的角度从函数与方程的关系引入,符合学生的认知,以有效地设问激发学生的求知欲和学习兴趣。
2、整堂课教学思路清晰明确,学生参与度高,师生互动有效,达到了预期效果。运用数形结合,转化化归的思想引导学生归纳总结函数零点的概念,借助图像和问题串探究发现零点存在性定理,借助反例对零点存在性定理作辨析,锻炼了学生思维,加深了对定理的理解,同时运用多媒体教学,形象直观,突破了本节课的重难点。
3、通过一题多解的训练帮助学生总结判断函数零点问题的方法,对后期的教学有指导作用。作业及思考问题为下节的学习奠定了基础。
1、时间分配不够合理,前面零点存在性定理的探究及应用时间相对较长,以致后面课堂小结时间相对紧张。
2、对学生的基础及计算能力研判不足,个别设问过于直接,今后需合理设问,联系对比已学知识,层层递进引导学生归纳结论。
平行四边形在实际生活和工作中具有广泛的应用,因此它的性质和判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。《平行四边形的判定》一节按照课本分为两个课时,前两个判定为第一课时,第三个判定作为第二课时,本节是《平行四边形的判定》的第一课时,主要探讨平行四边形的判定的两种方法,有了性质作为基础,因此对于判定的方法学生理解起来比较容易。在课堂上我本来打算要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养,但是最后由于时间没有把握好而最终没能落实下来,成为课堂的一点遗憾。
在这节课的教学过程中,学生的思维始终保持着高度的活跃性,出现了很多的闪光点,对我的启发也很大,真可谓教学相长。所以在教学过程中教师应积极转变传统的“传道、授业、解惑”的角色,在教学中应把握教材的精神,在设计、安排和组织教学过程的每一个环节都应当有意识地体现探索的内容和方法,避免教学内容的过分抽象和形式化,使学生通过直观感受去理解和把握,体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。
由于自身数学知识系统与教学经验的缺乏,在本节中也出现了较多的问题:
1.学生的想法有时老师是无法预测的,尽管看似一个较简单的问题,由于学生自身个体因素的差异,给出的解决方案可能是错的,也有可能不是最方便的,但是我们要放手让学生去思考,这样才能培养他们的探究能力,也有利于知识的掌握。但是实际落实过程中也遇到了问题,由于学生探究会需要较多的时间,这样对于后面内容的`教学提出了较大的困难,很多较好的教学环节由于时间不够而不得不临时删除,使得整个教学设计大大降级,失去原本的完整性,这也体现出自身的教学机智不够成熟,处理课堂实际能力比较薄弱。以后还要好好向优秀教师学习。
2.学生在练习过程中出现的问题,不应该操之过急地指出学生所犯的错误,而应该将这个改过的机会留给学生自己,让他们自己发现问题,解决问题。
3.对于猜想得到的定理的过渡太快,不符合数学逻辑。猜想是猜想,定理是经过科学长期证明过的正确命题,两者之间的跨度是非常大的。
4.对于课堂设计,真正让学生自己动手去做,去思考,去讨论,去获得结论的时间与空间都不够。从而整堂课让学生的思想受到了束缚而没能让学生的思维得到进一步的拓展,是一大败笔。
5.数学逻辑性,数学术语的使用还不够严密,有待于日后进一步提高。
本节的重点是:平行线的判定公理及两个判定定理。一般的定义与第一个判定定理是等价的。都可以做判定的方法。但平行线的定义不好用来判定两直线相交还是不相交。这样,有必要借助两条直线被第三条直线截成的角来判定。因此,这一个判定公理和两个判定定理就显得尤为重要了。它们是判断两直线平行的依据,也为下一节,学习习近平行线的性质打下了基础。 本节内容的难点是:理解由判定公理推出判定定理的证明过程。学生刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解。有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明。这些都使几何的入门教学困难重重。因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范。创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理。 本节课的教学旨在对平行线的三种判定方法的巩固。
1.重视复习的作用。
2.围绕重点练习巩固新知。
课堂练习安排了三道针对性很强的练习题:第1题既复习了角的平分线又应用了平行线的判定方法2,它也是今后学习判定等腰三角形的一个基本图形。第2题主要是让学生注意逻辑上的区别,而且这是学生容易出现错误判断的一个图形,教师在教学中应特别提醒学生其中的对应关系。第3题意在培养学生体验“有什么”,“根据什么”“得出什么”进行说理的过程。对于第3题教师对于学生出现不同的解题思路要有充分的准备,并积极加以引导。
3.引导学生对学习过程进行总结和反思,并能准确运用平行线的判定方法进行平行线判定的说理, 并进一步体会说理的规范表达。
1、对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定与性质进行了灵活的运用。注重学生的自己分析,启发学生用不同方法解决问题。探索直线平行的条件,实际上是“平行线的判定”老内容新教法,我的体会最深之一就是怎样让学生自主探索直线平行的条件,这与以前的教学方法完全不同,我感觉这节课成功之处是:
引导学生参与整个探索过程使学生真正理解和掌握“同位角”的概念,并能够用自己的语言概括出“同位角相等,两直线平行”这一重要结论。 2、课堂上在与学生的对话和让学生回答问题时,有意识地锻炼学生使用规范性的几何语言。 3、注重由学生从临摹书写到自主书写,锻炼学生的动手能力。
1、课堂的应变能力还需提高。对例三的研究时间过长,使后一阶段学生的思考时间较紧,由于时间关系,学生没有充分思考,虽然学生踊跃举手,但毕竟其他学生没有参与的机会。在今后备课中,继续要充分考虑到这一点。让学生在课堂上有更多的自主学习时间,让学生在实践活动中锻炼成长。
2、板书还要精心设计。
3、没有兼顾到学生的差异,如果在分析的环节不同层次的学生能够同伴互助,那么课堂的实效性将更充分体现。
4、认真备课。备知识:熟悉这节课的内容以及有关知识。备学生:既要因材施教更要因生施教,上好一节课不能只看老师在规定的时间完成了教学内容更重要的是学生通过这节课学会了什么,也就是不要看老师按时(45分钟)教了什么而是看学生到时学会了什么。学生学会了知识,掌握了知识才能说老师这节课是成功有效的教学。
反思是为了促进发展,反思是一种有思考的学习,是一种有理性的总结,可以提高教师教学教研的水平。今后每一节普通的课,都是我不断反省、审视自己,不断完善自己基本技能、提高教学水平的载体。