作为一名到岗不久的老师,我们都希望有一流的课堂教学能力,通过教学反思能很快的发现自己的讲课缺点,来参考自己需要的教学反思吧!本文是细心的小编给大伙儿收集整理的13篇植树问题教学反思的相关文章,欢迎借鉴,希望可以帮助到有需要的朋友。
我所执教的是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。这节课我完全受柏继明老师的手与数学思想所影响,今天做一节关于《植树问题》的数学课,我的设计初衷是希望学生可以自始至终都围绕着手来研究这一典型问题,让学生明白点与间隔的关系。学生开始似乎可以依据小手来了解点与间隔的关系。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。
一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的`实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。使学生直观认识并总结出了间隔和植树棵数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、关注植树问题模型的拓展和应用
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如公共汽车站的事件,上楼问题等都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。以图片的形式让孩子们了解生活中与植树问题相似的现象,
不足:
我依然出现了课堂调控差的问题,学生能够理解我出示的第一个有关植树问题的铺垫问题,我也总结了植树问题的间隔数×间隔长度=全长的公式,因此,在出示例一后,就急于让学生自己独立完成。而学生对于公式中的各部分名称可能还不是很熟悉,因此,公式变形困难,需要教师还要讲解的地方教师反而放手了。
这节课中我教学的是植树问题中的一种情况,即两端植树问题。反思这节课,我是有喜也有忧。喜的是学生学习比较投入,气氛比较活跃,大多数发言积极,悲的是学生的学习效果没有达到我预期的目标,中等以上的学生掌握的很轻松,但基础较差的学生掌握的不太好,还没真正达到学以致用目的。
为了让学生积极主动地投入到数学活动中,我创设与学生的生活环境和知识背景密切相关的学生感兴趣的学习情境。我选择猜谜语的方式,接着以学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,首次清晰地看出手指的个数与空格数之间是相差1的。然后让他们观察教室里那里有间隔,最后举出生活中那里存在间隔,让学生听钟声,在听到基础上用线段图画出钟声和他们之间的时间的间隔。学生在看,听,画之后初步感受了间隔和棵数之间的关系。这一系列的创设使学生体会到,只要处处留心用数学的眼光去观察宽阔的生活情境,就能发现在平常事件中蕴涵的数学规律。
学生在分组合作寻找规律的时候表现的很轻松。在学生的积极性调动起来后,便出示生活中的植树问题,让学生分组自主解决,在这个环节中,我让学生自主选择自己喜欢的方法解决问题。学生通过自己动手画线段、摆跳棋,完成我给出的表格,很快就发现了其中蕴含的规律,产生了很强的成功感,同时也有了一份自信,极大的调动了学生积极性。在此基础上,我适时的提出要同学们帮忙解决一个问题,这样既培养了学生的数学应用意识,又让学生感受到数学与生活的密切联系。植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我并没有就此罢手,而是让学生找找生活中的类似现象,如栽电线杆,排座位,安路灯,插彩旗等等,在学生从具体生活中抽象出数学现象后,又再一次让学生运用规律解决形式各异的生活问题,使数学知识运用于生活,使学生深深地体会到数学的价值与魅力。整节课,大多数学生的思维表现的很活跃。
但这节课也有我颇感不足的地方,那就是我把学生估计过高,我以为只要学生弄懂了棵数也段数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为有一部分学生知道了全长和间距不会求段数,我以为这是学生早已经学过的而且经常用到的,所以没特别的复习,导致了基础较差的学生无法下手。其二在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。
《植树问题》是人教版新课程标准实验教材年级五下册“数学广角”的资料,以前被演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结”的模式进行教学。并将“三种状况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在应对新的类似问题时不假思索地直接加以应用。同时在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。
透过对教材和各种相关的教学资料的深入解读,我认为“植树问题”就教学而言,可分为两个不同的教学目标:
一、明确引出“间隔数”与“棵数”这两者的关系,突出“一一对应”的思想,并以此为基础分析植树问题三种不同的状况,即“两端都栽”“只栽一端”与“两端都不栽”,使学生真正理解棵数与间隔数的关系。
二、总结出相关的计算公式“颗数=间隔数+1”,并透过公式帮忙学生更好地去掌握这一解题模式。
反思整个教学过程,我认为这节课在以下几个方面还是处理得比较好
1、这节课主线明朗清晰,即从生活中抽取植树现象,并加以提炼,然后透过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。
2、我注重教学资料的整体处理,对教材进行了整合和重构,设计的例题是一个开放性的题目,开放性的设计,使课堂成为充满活力的自由空间,从而激发学生的思维,让他们用心地去探究,使学生完整的体验“植树”这一实践活动让。
3、植树问题的思维有必须的复杂性,对于刚接触植树问题的四年级学生来说,则更有必须的难度了。所以,我让学生根据示意图用算式来表示出植树的棵数,学生在列式计算的过程中,透过直观的观察初步感知两端都栽“棵树=间隔数+1”。
4、注意反映数学与人类生活的密切联系。巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都内含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它,感悟数学建模的重要好处。
我感觉这节课的不足之处有以下几点:
1、数学的思想方法是数学的灵魂。本册安排“植树问题”的目的之一就是向学生渗透复杂问题从简单入手的思想,本节课没有让学生体验到“复杂问题简单化”的解题过程。
2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期盼日后调整改善。
3、对课堂的生成问题处理还不够灵活,不能进行很好的利用。
在今后的教学中,期望能透过自己一点一滴的积累和改善,提高自己的业务水平和调控、处理课堂生成的潜力,在不久的将来,能看到更棒的自己。
通过老师带领同学们去植树这一情境,接着出示ppt课件,让学生补充数学信息。让学生初步认识间隔,感知间隔数与棵数的关系。整节课以一道植树问题为载体,放手让学生自主学习,以三种不同的植树方案引导学生合作探究植树问题。
在教学中,让学生通过画图来解决,在画图过程中学生就会发现间隔数与棵数的关系。让学生在整理列表中学生们发现规律,验证规律、运用规律等活动,让学生经历数学模型的'科学探究过程。在这节课中,然学生以画图为主线,以“数形结合、一一对应”的数学思想方法为暗线,让所有学生参与为载体,展开学习,实现“数学模型的多维构建。
整节课上的有些前松后紧的感觉。以至于在解决问题中还有几道没有解决完。如果在探究三种栽树方法的规律时,再大胆的放手让学生自主的去探究,效果可能会更好些。
《植树问题》是人教版新课程标准五年级上册“数学广角”的内容,这一单元主要内容就是植树问题,植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。这样就把植树问题分成了三种情况,即:(1)植树的棵数=间隔数+1;(2)植树的棵数=间隔数;(3)植树的棵数=间隔数-1。
在这节课我们学习的是第一种情况,在教学中,我不但注重了学生动手操作能力的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔之间的关系,既有趣味性又贴近学生的生活。教材在编写时,都是给出路的长度,求间隔或棵数,但在练习时,很多题都是间隔和棵数,求路的长度。避免上节课出现问题的同时我还针对上节课出现的问题对学生提出质疑,让生生互评或师生互评,重点表扬大部分学得好的同学使每一个学生获得参与的机会、培养学生探究精神体验成功的感觉,增强学生的自信心和荣誉感,使他们更加热爱数学。
本节课的主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的方法,以此为基础,根据学生的认知规律,我设计了以下几个环节:
一、通过课前活动,以春季植树为素材,从让学生初步认识间隔,感知间隔数与棵树的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。反思整个教学过程,发现单纯的。用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法,注重学生获取知识过程的体验是学生从旧知识向隐含的新知识迁移的过
程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。
因此,在教学过程中,我注重了对数形结合意识的渗透。直接例题导入,引导学生可以画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路用画图的方式得出结果。这样把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。但是我感觉在本节课的教学活动中还有不足的地方:
其一,上课前准备不充分,那就是我把学生估计过高,我以为只要学生弄懂了棵数和段数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为有一部分学生知道了全长和间距不会求段数,我以为这是学生早已经学过的而且经常用到的,所以没特别的引导,导致了学生无法下手。
其二,在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。
其三,条理不够清晰,简直成了教师在唱独角戏,学生参与面不广,没有很好地完成教学任务。
在今后的教学中我还要全面、深入的了解学生,充分做好多个方面的准备。
本节课是在学生掌握两位数乘一位数,一位数除整十、整百数口算的基础上展开教学的,突出让学生在具体的情境中,探索并掌握一位数除两位数的口算方法,并能正确的运用所学的'知识解决一些简单的实际问题。教学中我把计算教学与解决实际问题相结合,联系学生实际创设教学情境,创造性的使用教材。让学生在现实背景中,探索除法的计算方法、解决实际问题。在教学中,主要体现以上几点做法。
1.提倡算法多样化
由于学生的知识背景及个性差异,面对同一个数学问题、同一道口算题时,学生解决问题的策略和思维方法必然会不一样,他们往往会从自己的生活经验和思考角度出发,产生不同的计算方法。另外,学生在计算时口算的方法也不尽相同。教学中我把计算教学与解决实际问题相结合,让学生在情境中,探索除法的计算方法、解决实际问题。教学中我注重培养学生思维的独立性和灵活性,鼓励学生独立思考,组织学生进行交流,在交流比较中体会算法的多样化。
2.促进学生主体参与
教学中我并不急于提示孩子们怎么做,而是给孩子们足够的时间和空间让他们思考怎么做,当出现问题的时候,则引导学生通过观察发现问题,探索解决问题的方法。
3.尊重学生思维方式
通过“自主D合作D探究”的学习过程,给学生展示自我的机会。在展示与汇报中,学生学会了口算除法的方法,体验到成功的快乐,增强了学生的自信心。
从学生生活出发,从学生的家庭入手,从学生周围环境着眼,是我们对如何实现数学从生活中来到生活中去的几点感悟。教师对教材的理解一定深入,所选择的方法更是不尽相同,不论怎样,只要注意挖掘,就会发现身边处处有数学,数学更是无时无刻不在为我们服务!让我们的数学教学更贴近生活。
上周进行了课本的最后一单元数学广角的学习,包括《沏茶问题》、《烙饼问题》、《田忌赛马》等3个课时。教材通过对生动有趣的生活事例及古代故事的分析,让学生从多角度经历在多种解决问题的方案中寻求最优方案的过程。本单元的难点在于如何让学生在具体问题的解决中感悟抽象的数学思想。因此在开展本单元前我查找了有关教辅书籍和资料,从以下几个方面去着手:
沏茶问题“教什么”和“怎样教”、“烙饼问题”仅仅会烙就可以了吗?“对策问题需要掌握几个点”?带着这些问题我开始了整单元的教学。下面我将课后反思整理如下。
在第1课时《合理安排时间》中存在以下问题比如在引导学生研究如何在最短的时间内使客人喝上茶的教学环节上,教学重点不够突出,学生讨论的时间不够充分,展示学生设计的不同方案时,在方法的引导上也做得不够,有些学生对于同一时间内可以同时完成几件事理解不透。有的同学能找出哪些事情可以同时做,但是却忘了事情的先后顺序,比如只能先淘米,才能煮饭,顺序不能颠倒。
第二课时《烙饼问题中》首先带领孩子们理解每句话的意思,然后抛出3张饼怎样烙最省时,在学生的回答中我发现,生活经验对数学学习有较好的帮助,但有时也有负作用。例如,有位小朋友竟这样问我:其中一个饼烙了一面后拿下,过了3分钟就要冷了,再烙另一面3分钟就不够了。实际情况是这样的,但若把它当成一个数学模型来研究时,这些就忽略不计了,这就是数学与生活的区别。所以对这种情况,我私下及时对他作出回应,并给予解释。数学是理性的,抽象的,更是严谨的。教学中如何把握课堂每一个细节,从而来培养学生思维的深刻性。例如,在提升烙饼的时间与所烙饼的个数的关系时,我应该及时提问:?烙2个饼需6分钟,烙3个饼需9分钟……每个饼需3分钟,有没有不符合规律的。而事实上是有特例的:当饼的个数是1个时,就不符合此规律。所以我觉得自己在这方面还有欠缺,应抓住时机拓展延伸,从而来引发学生的思维冲突,并通过辨析来修正此规律。?总之,重新创造和使用身边的教学资源要在优于教材上提供资源的情况下进行,在教学中要认真钻研教材,合理使用教材资源。至于所上的课,我不管失败还是成功,只要自己努力钻研了,其结果并不重要。我总相信这样一句话:不磨高一尺,怎能道高一丈呢?
一、学生的原有认知点在哪里?
植树问题,看是简单的问题,其实“很难”。为什么呢?那就是在以往的教学中,学生是没有接触这样的数学问题的。如:“间隔数”。对于学生来说完全是陌生的。而在老师看来,这些植树问题的相关知识点是现实生活中的,是学生熟悉的事物,其实不然。就象锯木头,“一根木头,锯3次,锯成了几段?”“用手夹乒乓球,每两个手指夹一个,可夹几个?”“班上原来8个女同学表演节目,现在每两个女同学中间站一个男同学,有几个男同学?”等等。像这样的素材是学生熟知的,但问起来,学生就觉得是脑筋急转弯似的,老会错,但这些情景学生喜欢,简单,可操作性强,只要在课前谈话、游戏时稍加点拨,学生就很容易理解“间隔数”了。
二、老师,你带直尺来了吗?
老师在这节课努力创设了探究情景,非常注意学生的学习过程,通过猜想、验证,使学生经历和体验“复杂问题简单化”的解题策略和方法,建立数学模型,渗透化归思想。但最后的结果也是很重要的。在今天的课堂中,老师还还高估了学生画线段图的能力。加上在第二次探究时给学生过多的要求,诸多因素影响了学生的探究出结果。
第二课时教学内容:
教科书第120页的内容
知识目标:
通过开放题的教学,培养学生探究数学问题的兴趣,引导学生细致严密地考虑问题;
能力目标:
让学生自己动手,自己实验,得出规律,解决生活中的实际问题。
情感目标:
通过小组合作、交流,培养学生的协作精神。
教(学)具准备:
长方形泡沫塑料板(每小组一块,正面画圆,背面画其他的封闭图形),牙签,画有长方形的练习纸。
教学过程:
一、复习铺垫
同学们,前面我们已经研究了一些植树问题,现在我这儿有三棵小树,要把它种在公路的一侧,想请你帮我想想有几种种法?
指名回答,引导学生说出棵数与段数的关系:
两端都种只种一端两端都不种
棵数=段数+1棵数=段数棵数=段数-1
请你把这个规律跟同桌说一遍;教师在黑板上贴示。
二、引入新课:
前几节课我们考虑的都是在直条线上种树,都可以找到线路的端点,可我们生活中经常会碰到在湖的四周植树,在花坛边缘种盆花
这些你能找到它的端点来吗?这就是我们今天要重点来讨论的内容封闭路线上的植树的规律
1、湖、花坛等等,它们的外围线路都是封闭的。它和不封闭路线上的植树规律是否相同呢?我们自己动手种一下就知道了。
1)、请同学们以四人小组为单位,用牙签当树苗,在泡沫塑料板的圆上种几棵数(棵树任你自己决定),边种边数:种了几棵,把圆分成了几段?
2)、学生以小组为单位操作;
3)、交流:你们小组种了几棵,把圆分成了几段?
4)、初步概括:你们发现了什么规律?(在圆形路线上植树,棵数=段数)
2、是不是每种封闭路线上的植树规律都是这样的呢?我们还要进一步研究。
1)、出示长方形空地题目
我们学校5号楼的东面有一块长方形空地,要在它的四周种树,每边种3棵,四个角上可以种也可以不种,有几种种法?
2)、四人小组讨论,并把种的方法在练习纸的长方形上表示出来(建议:公共角上的树用圆点表示,其他的用长点表示);
教师巡视指导;
3)、学生交流:说说你们小组是怎么种的?种了几棵?把长方形分成了几段?
得出:种植路线是长方形的,种植棵数与种植段数是相等的。
4)、出示教科书第120页的例3,让学生先独立思考,再讨论解决。
5)、展示不同的解决问题的方法,集体讨论判断正误
3、研究在其他封闭图形上种树:
A、你还想在什么封闭路线上种树?(指名回答)
B、学生在泡沫塑料板的各种封闭图形上种树,边种边数:种了几棵?分成了几段?
C、小组交流。
4、得出规律:在封闭路线上植树:棵数=段数(板书)
5、联系:它和非封闭路线上的哪种情况相同?
(告诉学生事物就是这样相互联系的!
6、质疑问难:大家还有什么疑问吗?
如果在不规则的封闭路线上植树,棵数和段数是否相同?
三、尝试练习:
练习第121页的做一做上的习题
学生尝试练习,交流,指名板书解题方法。
四、课堂小结。
这节课你最大的收获是什么?
第三课时课题:围棋中的数学问题
教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。
教学目标:
1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;
2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;
3.让学生感受数学在日常生活中的广泛应用。
教学重点:从封闭曲线(方阵)中探讨植树问题。
教学难点:用数学的方法解决实际生活中的简单问题。
情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。
教具准备:33格、44格、55格方格纸、围棋子若干粒、44格条形吹塑纸贴在地下。
课前准备:课桌围成回字形。
教学过程:
一、情境导入(课件出示)
猜谜:十九乘十九,
黑白两对手,
有眼看不见,
无眼难活久。(打一棋类名称)
[设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]
二、探索新知
1.教学每边摆放3粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?
(2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)
(3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。
(4)汇报交流(着重请学生说出方法。)
可能会出现以下方法:
32+2=824=8
33-1=834-4=8直接点数。
教师表扬学生的创新摆法,并奖励智慧星。(教师随学生回答,用课件出示摆放方法。)
2.教学每边摆放4粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。
(3)游戏:让一学生当小老师,其余学生当围棋子,请小老师邀请围棋子按上题要求站在老师设计的大棋盘上。
[设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。]
(4)汇报交流(着重请学生说出方法)
教师随学生回答,用课件出示摆放方法。
(5)你们最喜欢哪种方法?为什么?
3.教学每边摆放5粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。
(3)汇报交流。(教师随学生回答,用课件出示摆放方法。)
(4)你们最喜欢哪种方法?和同桌说一说。
[设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身经历的过程中实现知识能力乃至生命的同步发展。]
三、总结规律
(1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)
每边放的个数最外层总数
3
4
5
6
18
你发现了什么规律:_____________________________________
(2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?
(2)总结规律::教师随着学生的回答板书:
间隔数边数=最外层的总数
(3)学生根据规律,独立完成例3。
三、运用规律
1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子?
如果最外层每边能放200个,最外层一共可以摆放多少个棋子?
如果最外层每边能放300个,最外层一共可以摆放多少个棋子?
拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)
2.做第121页第三题
《植树问题》是人教版小学数学五年级上册数学广角的内容,安排“植树问题”的目的在于向学生渗透复杂问题从简单入手的思想。
教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
两端都栽的植树问题,主要目标是向学生渗透复杂问题从简单入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。反思整个教学过程,我认为我执教的这节课整体是成功的。
根据学生的认知规律,我设计了以下几个环节。课前创设情境使学生明确要学习的内容,紧接着引出例题探讨植树问题,使学生明白:路长、间隔长度、间隔数、棵树的含义。然后让学生猜想种的棵树,通过画图验证的方法使学生体会到100这个数字在这道题中显得数字有些大,将长度改成20米、25米,再次进行画图验证。目的在于,让学生在现实的情景中,用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里改小数据,有利于学生的思考,主要照顾后20℅的学生。然后以例题展开,让学生动脑、动手反复验证,最终总结出:间隔数+1=棵数。整节课条理清晰、层次分明、浅显易懂,始终围绕重点内容进行难点的突破。
反思整个教学过程,我认为这节课有以下几点做得不够好,有待改进:
这节课的练习设计不够精,因为希望把尽可能多的题型呈现给学生,所以没有把握好教学时间。因此,在教学中应该把握好教学的度,相信学生的能力,合理取舍教学内容。
我感觉在本节课的教学活动中,师生间的沟通交流上还有待于进一步加强,有时过高的估计学生的学习基础和理解能力,造成站位过高的局面。今后的教学中要全面、深入的了解学生,充分做好各方面的准备。对学生的评价语太单一,我觉得我应该在这方面多下功夫,应该让自己的评价与表情结合。
一、整节课条理清晰、层次分明、浅显易懂,始终围绕重点内容进行难点的突破。
二、课前导入创设情境,从身边熟悉事物手指数与间隔数之间的关系,人民大会堂前柱子数与间隔数之间的关系,激发学生学习兴趣,初步感受个数与间隔数之间的关系。
三、渗透数形结合的思想,培养学生借助图形解决问题的意识。我把书本例题中的“100米的小路”改成“20米的小路”,采用数形结合的方法――画图解决问题,让学生初步理解间隔数与植树棵数之间的规律。
四、能让学生动手操作,合作探究,发现问题、规律,让学生发表见解。
一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,还是不够大胆放手,学生合作活动时间还是比较少。以至课堂中还有很多不足之处,期待日后调整改进。
《植树问题》是四下第八单元“数学广角”中的内容,这个单元主要是向学生渗透有关植树问题的一些思想方法,通过现实生活中一些实际问题,让学生发现规律,然后再用发现的规律解决生活中的一些实际问题。植树问题分为两端都栽、两端都不栽、一端栽一端不栽三种情况。本节课我教学的是植树问题中的第一种情况,即两端都栽的问题。反思整个教学过程,我认为有以下几点做得比较好:
一、关注学生的学习起点
学生是数学学习的主人,教师作为学生学习的组织者、引导者与合作者,应及时关注学生学习的起点。在教学过程中,我通过对五指的手指个数与手指缝之间关系的探究,在直观形象的手指演示中让学生初步感知棵数与间隔数的关系。本课伊始,我首先出了个谜语:“一棵树,五个叉,不长叶子不长花,能写能做还会画,就是不会开口讲讲话。”随后让学生观察自己的手指,引导学生得出:五个手指有4个间隔,4个手指有3个间隔,3个手指有2个间隔,2个手指有1个间隔。使学生清楚地看出手指的个数与间隔数之间是相差1的。接下来又通过做快速问答的游戏,使学生加深认识了植树问题中间隔数和棵数的关系,为下面的学习做了铺垫,同时学生的学习兴趣也被激发了起来。由此可见,我们在教学中一定要关注学生的学习起点,放低起点,这样才会收到事半功倍的效果。
二、注重学生的自主探索
学生通过自己动手画图,很快就发现了其中蕴含的规律。展示环节,我让展示小组的学生利用展示台给大家展示,学生指着自己画的线段图边讲解边说,让其他同学清楚地看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。改变间距后,段数和棵数相应也发生了变化。
通过自学,小组交流,小组展示,学生很容易的得出了在两端栽的情况下棵数与间隔数之间的关系是:总长÷间距=间隔数,棵数=间隔数+1。整个学习过程都是学生自主探索的结果。学生把整个分析、思考、解决问题的过程全部自己展示了出来。在这一过程中,学生积极思考,大胆尝试,主动探索,也体验到了成功的喜悦和学习的乐趣。
三、关注植树问题模型的`拓展和应用
规律总结出来了,我并没有就此罢手,而是让学生找生活中的类似现象,使学生认识到生活中的许多事例看上去跟植树问题毫不相干,但是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,如计算公共汽车从起点站到终点站所行的距离及爬楼梯问题。求路边的电线杆、排座位、在路两旁安装路灯、插彩旗等等,目的是让他们利用所学植树问题的知识来解决生活中的数学问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值。
四、渗透数形结合的思想,培养学生借助图形解决问题的意识
数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。本着这个思想我在让学生理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的能力。练习环节,我还设计了我们平时熟悉的钟声,让学生听钟声,在听到基础上用线段图画出钟声和他们之间的时间的间隔。学生在听、画之后初步感受了间隔数和棵数之间的关系。同时,通过画图,降低了此题的难度。再如:在解决锯木头问题时,通过成语“一刀两断”引出“一刀两段”,结合线段图,清楚地使学生理解间隔数总是比端点数少,使用数形结合的方法,在增加学生学习兴趣的同时,植树中棵树和间隔数之间的关系便迎刃而解。
存在问题:
这节课也有不足的地方,那就是我把学生估计过高,我以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,可以总结一下“间隔数=棵数-1,路长=间隔数×间隔长”等知识的扩散。
1.教学设计力求有深度有厚度。《植树问题》这一课的核心不是掌握公式,套用公式解题,而是让学生在经历数学建模的过程中,体验一一对应,数形结合,化繁为简的重要思想方法。
教学设计分两条主线走:一条以构建学生知识结构为线索,使学生对植树问题的认识经历了“生活问题--猜想验证--建立模型”不断数学化的过程,较好的实现了自由生活中的具体问题过渡到相应的。“数学模式”。然后学生运用模型解决问题,把数学化的东西又回归生活,再一次体验数学与生活的紧密联系。另一条主线以渗透数学思想方法为主线。不仅让学生在体验中感悟化繁为简的思想,同时利用画线段图的方式,感悟一一对应,数形结合的思想。从而理解棵数与间隔数的关系,不仅知其然还要知其所以然。
2.大胆放手,让学生去探究去思考。在学生自主提出问题后,积极主动地进行大胆猜想,然后通过自主探究、合作探究等不同形式进行探究验证,整个课堂老师则引导学生在质疑、猜想中动手操作验证;在操作中不断思考;在思考中汇报;在汇报中比较;在比较中反思;在反思中总结。从而建立一个完整的植树问题数学模型。
本节课还存着许多问题:
1.环节处理不够恰当,造成时间的把控上不够精准。整节课感觉有点赶时间,走流程,重点知识不突出。比如在对“间隔数”如何来求上花的时间有点少,有些学生对如何快速求出“间隔数”还存在着疑惑。
2.由于没有展台,以至于不能清晰地展示学生的作品,让其他同学和听课老师不能直观地看到数据,让验证更具有说服力。
在今后的教学中,期望能透过自己一点一滴的积累和改善,提高自己的业务水平和调控、处理课堂生成的潜力,在不久的将来,能看到更棒的自己。