七年级数学下册教案(优秀6篇)

对于7年级下册数学的学习,需要打下良好的基础。学而不思则罔,思而不学则殆,本页是可爱的小编帮大伙儿分享的七年级数学下册教案(优秀6篇),仅供借鉴。

人教版七年级下册数学教学设计 篇1

一。教学目标:

1、认知目标:

1)了解二元一次方程组的概念。

2)理解二元一次方程组的解的概念。

3)会用列表尝试的方法找二元一次方程组的解。

2、能力目标:

1)渗透把实际问题抽象成数学模型的思想。

2)通过尝试求解,培养学生的探索能力。

3、情感目标:

1)培养学生细致,认真的学习习惯。

2)在积极的教学评价中,促进师生的情感交流。

二。教学重难点

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三。教学过程

(一)创设情景,引入课题

1、本班共有40人,请问能确定男女生各几人吗?为什么?

(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)

(2)这是什么方程?根据什么?

2、男生比女生多了2人。设男生x人,女生y人。方程如何表示? x,y的值是多少?

3、本班男生比女生多2人且男女生共40人。设该班男生x人,女生y人。方程如何表示?

两个方程中的x表示什么?类似的两个方程中的y都表示?

像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

4、点明课题:二元一次方程组。

(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)

(二)探究新知,练习巩固

1、二元一次方程组的概念

(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]

(2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。

①x2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0

(设计意图:这一环节是本课设计的重� )

2、二元一次方程组的解的概念

(1)由学生给出引例的答案,教师指出这就是此方程组的解。

(2)练习:把下列各组数的题序填入图中适当的位置:

方程x+y=0的解,方程2x+3y=2的解,方程组的解。

(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。

(4)练习:已知是方程组的解,求a,b的值。

(三)合作探索,尝试求解

现在我们一起来探索如何寻找方程组的解呢?

1、已知两个整数x,y,试找出方程组的解。

学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。

一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。

(设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验)

2、据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

(1) 设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。

由学生独立完成,并分析讲解。

3、例 已知方程3X+2Y=10

⑴当X=2时,求所对应的Y 的值;

⑵取一个你自己喜欢的数作为X的值,求所对应的Y的值;

⑶用含X的代数式表示Y;

⑷用含Y 的代数式表示X;

⑸当X=-2,0 时,所对应的Y值是多少;

(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。)

(四)课堂小结,布置作业

1、这节课学哪些知识和方法?

2、你还有什么问题或想法需要和大家交流?

3、教材P82

教学设计说明:

1、本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

2、“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

3、本课在设计时对教材也进行了适当改动。例题方面考虑到数� 另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

七年级下册数学教学计划 篇2

一、 学情分析

初一学生的行为习惯和学习习惯的差异性较大,学生的学习习惯主要集中在小学的水平,主要依靠老师的“讲”,大多数学生没有自主学习的习惯,这很不适应当代教育的要求,因此培养学生两个习惯的养成,坚决落实具有我校特色的初中课堂教学改革是本学期的教学重点。在教学中注重培养培养学生的参与意识,培养学生的独立性和自主性,引导学生质疑,调查,探究并在实践中学习,促进学生在教师的指导下主动的,富有个性地学习的。

二、 本学期教学目的、任务和要求

(一)教学目标。1.知识与技能。体验从具体情境中抽象出数学符号的过程,理解有理数、代数式、方程;掌握必要的运算(包括估算)技能,探索具体问题中的数量关系和变化规律,掌握用代数式、方程进行表述的方法,认识基本图形。

2、过程与方法。(1)通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。(2)围绕初中数学教材、数学学科“基本要求”进行知识梳理。

3、态度与价值观。通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

(二)教学任务。七年级上册包括有理数、整式的加减、一元一次方程和图形认识初步四章内容,供七年级上学期使用全书共需约61课时,具体分配如下:

第一章有理数19课时

第二章整式的加减 8课时

第三章一元一次方程18课时

第四章几何图形初步16课时

(三)教学要求。1.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运

用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。

2、经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法。

3、在与他人合作交流的过程中,能较好地理解他人的思考方法和结论。

三、 教学内容分析

本册书在全套教科书中具有重要的基础地位,主要内容是整个七~九年级教材体系的重要基础,书中的某些思想方法也是初中数学的重要思想方法。

(一)从知识内容上来看,有理数的有关概念和运算是整个学段

“数与代数”领域内容的基础;整式的加减是在学生已有的用字母表示数以及有理数运算的基础上展开的,是学习下一章“一元一次方程”的直接基础,也是以后学习分式和根式运算、方程以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可缺少的数学工具;学好一元一次方程的有关内容也能为今后学好有关方程、不等式、函数等内容打好基础;图形认识初步中所学习的如何从具体事物中抽象出几何图形,如何把握几何图形的本质特征以及图形的表示方法,对几何语言的认识与应用等也都是整个“空间与图形“领域的基础。

(二)从数学思想方法来看,整册教科书中体现的将实际问题抽象为数学问题,利用数学问题解决实际问题的模型化思想;许多性质、运算律呈现时体现的从特殊对象归纳出一般规律的思想;“有理数”中利用数轴研究有理数的有关概念和性质中体现的数形结合思想;“一元一次方程”中解方程的化归思想和程序化思想等等。这些思想方法不仅在本册书中,而且在后面其他各册书也都是带有一般性的常用的数学思想方法。

四、 本学期工作具体措施

为全面推进数学教学改革,提高本组教师素质和课堂组织水平,特制定本组教研活动如下:

(一)备课。加强管理,严格落实集体备课制度,按时参加集体备课,针对学生实际,以学法指导为中心。个人备课要做到有课必备,先周备课,备课标和说明,备教材和教参,备学生,备教法,备练习

的设计与辅导。集体备课要根据《山大华特卧龙学校关于加强集体备课的几项具体要求》,努力做到六个统一:统一内容,统一目标,统一重点和难点,统一习题,统一课件和统一检测。加强电子备课中练习的实效性,积极与有关的中考题目相联系,体现电子备课中练习的时代性,和新颖性。教案、学案和课件三者高度配套,切实有效,操作性强。

(二)作业。作业设计要紧扣教学内容,选题要有典型性,注重基础知识和基本技能的培� 布置的作业尽量全批全改,下次课前尽量发给学生,对出现问题比较集中的题目要重点讲评,并充分利用好错题集。

(三)检测。单元检测要先系统复习,梳理出知识体系和解题技巧以及易错易混题目,精心设计题目,题目设置难易适中,既要考查学生的基础知识,又要考查学生的基本能力。阅卷要流水批阅,先做好试卷分析,然后进行试卷讲评,并做好查漏补缺。

(四)合作学习。在平时工作中要坚持学习教育教学理论,坚持学习新课程标准,加强教师交流,团结协作,群策群力,落实听课、评课制度,多交换意见。强化研究意识,教师对要讲解的题目和知识,必须充分思考如何教给学生方法,讲前要先做。

(五)培养和激发学生学习的兴趣。数学教学中非常强调激发学生的学习兴趣,学生只有在有兴趣的前提下,才能跟好的进行学习,更好的吸收知识。因此我们在平常的教学中要发挥学习小组的功能,

培养差生的学习兴趣,让每位同学都有更大的提高。

(六)要注重尖子生的培养和后进生的转化工作。由于我校初一学生很多,他们的性格很复杂,数学素质差距较大,为缩小在数学上出现的两极分化现象,我们将采取以下的措施:一是通过平时单元考试和课堂了解,每位数学老师挑3—4个进行重点帮教补差。与此同时,由每个学习小组长带一个后进生, 双管齐下,共同提高。再是平时也要注重对小组长的培养,培养小组长认真负责的态度。在班内形成一种要学习的好风气,提高班级的整体成绩。对每一位差生和尖子生负责的同时,也不能忘记每一位处于中间层次的学生,其实他们才是班级灵魂和中流砥柱。让他们感受到老师的重视,才能整体带动学生的学习积极性。我们要以学生为中心,培养他们良好的数学学习习惯,这是一项长期的工作,也是我们教研活动的一项重要内容。

(七)参与教研活动。积极参加学校和上级各部门组织的各类教学教研活动,了解本学科的教学教研的新动向,以适应新的教育形式。

我们会在总结上学期的经验和教训之后,要更加认真,更加努力,注重实效,提高教学质量,希望能在本学期能够更上一层。

五、 本学期教学进度表和电子备课骨干教师分工表

教学进度表:

人教版七年级数学下册全册教案最新例文 篇3

教材分析

1、知识结构

2、重点、难点分析

重点:真命题的证明步骤与格式。命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将会有大量的证明问题;另一方面它还体现了数学的逻辑性和严谨性。

难点:推论证明的思路和方法。因为它体现了学生的抽象思维能力,由于学生对逻辑的理解不深刻,往往找不出的思维切入点,证明的盲目性很大,因此对学生证明的思路和方法的训练是教学的难点。

(二) 教学建议

1、四个注意

(1)注意:①公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题;②公理可

(2)注意:定理都是真命题,但真命题不一定都是定理。一般选择一些最基本最常用的真命题作为定理,可以以它们为根据推证其他命题。这些被选作定理的真命题,在教科书中是用黑体字排印的。

(3)注意:在几何问题的研究上,必须经过证明,才能作出真实可靠的判断。如“两直线平行,同位角相等”这个命题,如果只采用测量的方法。只能测量有限个两平行直线的同位角是相等的。但采用推理方法证明两平行直线的同位角相等,那么就可以确信任意两平行直线的同位角相等。

(4)注意:证明中的每一步推理都要有根据,不能“想当然”。①论据必须是真命题,如:定义、公理、已经学过的定理和巳知条件;②论据的真实性不能依赖于论证的真实性;③论据应是论题的充足理由。

2、逐步渗透数学证明的思想:

(1)加强数学推理(证明)的语言训练使学生做到,能用准确的语言表述学过的概念和命题,即进行语言准确性训练;能学会一些基本的推理论证语言,如“因为……,所以……”句式,“如果……,那么……”句式等等;提高符号语言的识别和表达能力,例如,把要证明的命题结合图形,用已知,求证的形式写出来。

(2)提高学生的“图形”能力,包括利用大纲允许的工具画图(垂线、平行线)的能力和在对要证命题的理解(如分清题设、结论)的基础上,画出要证明的命题的图形的能力,后一点尤其重要,一般通过图形易于弄清命题并找出证明的方法。

(3)加强各种推理训练,一般应先使学生从“模仿”教科书的形式开始训练。首先是用自然语言叙述只有一步推理的过程,然后用简化的“三段论”方法表述出这一过程,再进行有两步推理的过程的模仿;最后,在学完“命题、定理、证明”一单元后,总结证明的一般步骤,并进行多至三、四步的推理。在以上训练中,每一步推理的后面都应要求填注推理根据,这既可训练良好的推理习惯,又有助于掌握学过的命题。

教学目标:

1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤。

2、能用符号语言写出一个命题的题设和结论。

3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力。

教学重点:证明的步骤与格式。

教学难点:将文字语言转化为几何符号语言。

教学过程:

一、复习提问

1、命题“两直线平行,内错角相等”的题设和结论各是什么?

2、根据题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截)

3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示)

二、例题分析

例1、 证明:两直线平行,内错角相等。

已知:a∥b,c是截线。

求证:∠1=∠2.

分析:要证∠1=∠2,

只要证∠3=∠2即可,因为

∠3与∠1是对顶角,根据平行线的性质,

易得出∠3=∠2.

证明:∵a∥b(已知),

∴∠3=∠2(两直线平行,同位角相等)。

∵∠1=∠3(对顶角相等),

∴∠1=∠2(等量代换)。

例2、 证明:邻补角的平分线互相垂直。

已知:如图,∠AOB+∠BOC=180°,

OE平分∠AOB,OF平分∠BOC.

求证:OE⊥OF.

分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可。

三、课堂练习:

1、平行于同一条直线的两条直线平行。

2、两条平行线被第三条直线所截,同位角的平分线互相平行。

四、归纳小结

主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识。然后见投影仪。

五、布置作业

课本P143 5、(2),7.

六、课后思考:

1、垂直于同一条直线的两条直线的位置关系怎样?

2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样?

3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样?

2021年最新人教版七年级下册全部数学教案 篇4

教学目标:

1、理解有理数的意义。

2、能把给出的有理数按要求分类。

3、了解0在有理数分类中的作用。

教学重点:会把所给的各数填入它所在的数集图里。

教学难点:掌握有理数的两种分类。

教与学互动设计:

(一)创设情境,导入新课

讨论交流 现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数。大家讨论一下,到目前为止,你已经认识了哪些类型的数。

(二)合作交流,解读探究

3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…

议一议 你能说说这些数的特点吗?

学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数。

说明 我们把所有的这些数�

试一试 你能对以上各种类型的数作出一张分类表吗?

有理数

做一做 以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试。

有理数

数的集合

把所有正数组成的集合,叫做正数集合。

试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合。

(三)应用迁移,巩固提高

【例1】 把下列各数填入相应的集合内:

,3.1416,0,2004,- ,-0.23456,10%,10.1,0.67,-89

【例2】以下是两位同学的分类方法,� 我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法。

下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?

(五)课堂跟踪反馈

夯实基础

1、把下列各数填入相应的大括号内:

-7,0.125, ,-3 ,3,0,50%,-0.3

(1)整数集合{};

(2)分数集合{};

(3)负分数集合{ };

(4)非负数集合{ };

(5)有理数集合{ }。

2、下列说法中正确的是(  )

A.整数就是自然数

B. 0不是自然数

C.正数和负数� 尤其是女生的数学成绩普遍偏低,男生情况稍好,但是相当一部分学生解题作答比较粗心,不能很好的发挥出自己应有的水平。

二、指导思想

完成七年级下册数学教学任务,积极落实《数学新课程标准》的改革观,通过教育教学,结合学生的实际情况,让学生亲历将实际问题转化为抽象的数学模型,并进行解释与应用的过程。使学生获得对数学知识理解的同时,强化基本计算能力和归纳的能力。培养其探索精神和创新思维。同时提高知识应用的能力,使学生的综合能力得到较大的提升。

三、教材分析

本学期的教学内容共计五章,第6章:一元一次方程,第7章:二元一次方程组,第8章:多边形,第9章:轴对称,第10章:统计的初步知识。

第6章:一元一次方程本章的内容是在学生学习了有理数的运算,整式的加减之后的学习内容,是初等数学的基础知识,也是学生进一步学习二元一次方程组、一元一次不等式,及一元二次方程的基础。一元一次方程在实际问题中的应用,是中学阶段应用数学知识解决问题的开端。重点是一元一次方程的基本概念及其解法,一元一次方程在实际问题的中的应用,其难点是一元一次方程在实际问题中的应用,在教学中渗透数学建模思想和类比、化归、归纳等数学思想方法,是学生今后学习和工作必备的数学修养和素质,增强学生学数学、用数学的意识。

第7章:二元一次方程组本章是在一元一次方程学习的继续学习。本章的重点是二元一次方程组的解法和二元一次方程组在实际问题中的应用。在教学中渗透数学建模思想和化归的思想,即化二元为一元,化未知为已知,化复杂为简单的思想,学生通过经历列方程、解方程的探究过程,培养学生提出问题,解决问题的能力,增强用数学的意识。提高学生学习的积极性。

第8章:多边形本章是在学习了相交线与平行线的基础上的深入学习,是对图形的进一步认识。主要内容涉及三角形、一般多边形的边角关系。本章的重点是三角形的主要线段(中线、高线、角平分线)的概念,三角形外角的性质及外角和,三角形三边的关系,多边形内、外角和的公式,正多边形铺满地面的道理及其组合。难点是一般三角形、多边形的边角关系的应用和说理。本章由瓷砖的铺设导入,研究一般三角形、多边形的性质,到运用相关性质探索拼地板的问题结束,体现了数学来源于实践,又应用于实践的特点,采用“问题――探究――发现”的研究方法,让学生多探究学习,自主探索,合作学习。

第9章:轴对称本章的主要内容是从现实生活中的图形入手,学习轴对称及其基本性质,欣赏并体验轴对称在现实生活中的广泛应用。能利用轴对称性去探索等腰三角形等简单图形的性质。本章的重点是轴对称的概念,常见图形的轴对称性,“线段垂直平分线上的点到线段两端的距离相等”,“角平分线上的点到角两边的距离相等”及其逆定理,探索轴对称的基本性质,能够按要求画轴对称图形并利用轴对称进行图案设计,探索并掌握等腰三角形的性质与判定,等边三角形的性质与判定,并能进行说理。其难点是说理。在教学的过程中,充分挖掘有关的说理题,使学生能得到较为充分的训练,过好说理的入门关。教材的教学内容上,呈现力求生动有趣、贴近现实生活,对知识的陈述,不仅注重结果,而且尽量给学生提供一定的探索空间和手段,让学生自己去发现结论,教学中要充分应用好教材,实现教材编写者的意图,让学生在探索过程中,培养学生的各种能力。教学中要根据教材内容设计相应的让学生动手操作实践的内容,利用轴对称进行图案设计这一内容,是让学生在动手操作的过程中体现轴对称变换和数学美在现实生活中的广泛应用,等腰三角形中引入了较多的动手操作和直观感知,通过折纸、观察、归纳等方法去探索和发现等腰三角形的相关性质,教学中要充分进行实验。通过本章的教学,让学生体会数学的和谐与美感,提高审美情趣。

第10章:统计的初步认识本章是在上学期《数据的收集与表示》基础上的继续,主要内容是调查的两种方式,抽样调查与普查,平均数、中位数、众数的概念及其对他们的正确选用,体验随机事件中偶然中的必然,体验随机事件发生机会的均等与不等。重点是平均数、中位数、众数的概念及其对他们的正确选用,体验随机事件发生机会的均等与不等,体验偶然中的必然,学习用分析或实验的方法判断游戏规则的公平性。难点是认识随机事件偶然中的必然,认识大数定律,分析随机事件中成功的概率,认识平均数、中位数、众数的误用与陷井。通过本章的教学使学生明白所学知识与现实生活的联系,增进学生对数学价值的认识,从而激发他们的学习兴趣,提升他们自主探索与合作学习的能力,教学中特别重视开展活动,让学生的兴趣在了解探究任务中产生,让学生的思考在分析真实的数据中形成,让学生的理解在集体讨论中加深,让学生的学习在合作探究中进行。

四、教学任务

(一)在知识与技能方面

1、在“一元一次方程”与“二元一次方程组”中,使学生了解方程是反映现实世界数量关系的有效的数学模型,体现了知识与生活的密切相关,学会寻找所给问题中隐含的数量之间的关系,掌握基本的解决方法;会正确熟练的解一次方程(组),实践与探索中,与学生一起分析、尝试解决问题,逐步提高各种能力。

2、“多边形”与“轴对称”中,掌握一般三角形边、角和多边形边、角的关系,并会运用解决实际问题,认识特殊的图形――轴对称图形中隐含着的数学不变量之间的关系,学生能应用相关知识合理的推理,掌握等腰三角形的特征与性质。

3、“统计的初步认识”中,学会数据处理的抽样调查方法,使学生学会统计数据,分析处理数据,合理使用平均数、中位数、众数描述一组数据的集中趋势,警惕平均数、中位数、众数的误用,让学生体会随机事件的内在规律,体会随机事件中偶然中的必然,会分析简单的机会均等与不等的问题,会游戏规则是否公平。

(二)在过程与方法方面

1、让学生经历从具体问题中的数量相等关系,列出方程的过程,探究方程(组)的解法,经历和体会解方程(组)中“转化”的过程与思想,通过实践与探索经历“问题情境—建立数学模型—解释应用与拓展”的过程,体会消元化归思想。

2、体验探究、归纳多边形的内角和与外角和公式及过程,学会合情推理的数学思想方法,经历“问题—探究—发现”的研究过程得到相关性质。

3、在轴对称中,经历动手操作和直观感知,通过自主学习,提高学习能力,增强合作意识,提高解决问题的意识与能力,经历通过折纸、观察、归纳等方法去探索和发现等腰三角形的有关性质。

4、在统计的认识中,经历抽样调查,数据的分析处理,平均数、中位数、众数的选用,体验随机事件中偶然中的必然。学生的解决问题的能力,动手实践能力,逻辑思维与逻辑推理能力在学生的自主探究、合作、交流中得到锻炼与提高,选择生动活泼、贴近生活的实例,激发学生学习数学的兴趣,感受数学来源于实践,又应用于实践,提高学生审美情趣,体验数学的和谐与美感,这是情感与态度目标。

五、教学措施

1、认真研读新课程标准,钻研教材,精选习题,精心备课,做好教案,上好新课。同时仔细批改作业,作好辅导,发现问题及时解决作认真总结成功与失败的经验和原因。

2、充分利用现代化教学设施制作教学道具,设置教学情境,结合日常生活,由浅入深,循序渐进。引导学生主动加入课堂学习和讨论,积极参与知识的探究与规律的总结。

3、营造民主、和谐、平等、自主的学习氛围,引导学生进行合作探究、交流和分享发现的'快乐。从而体会到学习的乐趣,激发学生的学习热情。

4、精心设计探究主题,引导学生学会发散思维,培养学生创造性思维的能力,实现一题多解、举一反三、触类旁通。

5、开展分层教学模式,成立互助学习小组,以优带良,以优促后。同时狠抓中等生,辅导后进生,实现共同进步。

2021年最新人教版七年级下册全部数学教案 篇5

教学目标:

1、了解正数与负数是实际生活的需要。

2、会判断一个数是正数还是负数。

3、会用正负数表示互为相反意义的量。

教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义。

教学难点:负数的引入。

教与学互动设计:

(一)创设情境,导入新课

课件展示 珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况。

(二)合作交流,解读探究

举出一些生活中常遇到的具有相反意义的量,如温度是零上7 ℃和零下5 ℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等。

想一想 以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?

为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外)。

活动 每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示。

讨论 什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数。

总结 正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点。

(三)应用迁移,巩固提高

【例1】举出几对具有相反意义的量,并分别用正、负数表示。

【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等。

【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02 g,记作+0.02 g,那么-0.03 g表示什么?

【例3】 某项科学研究以45分钟为1个时间单位,� 例如,9:15记为-1,10:45记为1等等。依此类推,上午7:45应记为(  )

A.3  B.-3  C.-2.5  D.-7.45

【点拨】读懂题意是解决本题的关键。7:45与10:00相差135分钟。

(四)总结反思,拓展升华

为了表示现实生活中具有相反意义的量引进了负数。正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”。另外,0既不是正数,也不是负数。

1、下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):

星期 日 一 二 三 四 五 六

(元) +16 +5.0 -1.2 -2.1 -0.9 +10 -2.6

(1)本周小张一共用掉了多少钱?存进了多少钱?

(2)储蓄罐中的钱与原来相比是多了还是少了?

(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣。

2、数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”。

(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;

(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏。

(五)课堂跟踪反馈

夯实基础

1、填空题:

(1)如果节约用水30吨记为+30吨,那么浪费20吨记为    吨。

(2)如果4年后记作+4年,那么8年前记作    年。

(3)如果运出货物7吨记作-7吨,那么+100吨表示    。

(4)一年内,小亮体重增加了3 kg,记作+3 kg;小阳体重减少了2 kg,则小阳增加了     。

2、中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米。

(1)用正数或负数记录下午1时和下午5时的水位;

(2)下午5时的水位比中午12时水位高多少?

提升能力

3、粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤。如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数。

(六)课时小结

1、与以前相比,0的意义又多了哪些内容?

2、怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)

一键复制全文保存为WORD
相关文章