作为一名辛苦耕耘的教育工作者,就有可能用到教案,编写教案有利于我们科学、合理地支配课堂时间。来参考自己需要的教案吧!读书是学习,摘抄是整理,写作是创造,本文是敬业的小编帮助大家分享的初一数学下册教案(精选5篇),仅供借鉴。
教学目标:
1、经历数据离散程度的探索过程
2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。
教学重点:
会计算某些数据的极差、标准差和方差。
教学难点:
理解数据离散程度与三个差之间的关系。
教学准备:
计算器,投影片等
教学过程:
一、创设情境
1、投影课本p138引例。
(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)
2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。
二、活动与探究
如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)
问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?
2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的`20只鸡腿质量与对应平均数的差距。
3、在甲、丙两厂中,� 这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。
三、讲解概念:
方差:各个数据与平均数之差的平方的平均数,记作s2
设有一组数据:x1,x2,x3,xn,其平均数为
则s2=,而s=称为该数据的标准差(既方差的算术平方根)
从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。
四、做一做
你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?
(通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)
五、巩固练习:
课本第172页随堂练习
六、课堂小结:
1、怎样刻画一组数据的离散程度?
2、怎样求方差和标准差?
七、布置作业:
习题5、5第1、2题。
教学建议
1.知识结构
2.重点和难点分析
(1)本节的重点是会用两直线垂直的定义判定两条直线垂直和点到直线的距离的概念。两直线垂直的定义中虽然强调“有一个角是直角”,但实际上由对顶角和邻补角的性质,可以得到其他三个角也都是直角,因此不指定哪一个角是直角,实际上无论哪一个角是直角,都可以判定两直线垂直。反过来,已知两直线垂直,那么它们的四个交角中无论哪一个角都是直角。对于点到直线的距离,一定要给学生强调距离是垂线段的长度,是一个数量,而不能误认为是垂线段本身。
(2)本节的难点是空间直线与平面、平面与平面的垂直关系。因为初一学生的空间想象能力比较差,想象不出什么情况下直线与平面、平面与平面垂直。教科书是学生在对长方体已有认识的基础上,通过进一步的观察分析,得出结论,对于这些结论,只要求学生有感性认识,不要求学生掌握,所以老师不要深挖。
3.教法建议
(1)本节仍用上节用过的相交线模型作演示(也可用我们提供的课件),在让学生观察模型时,不要只让学生看热闹,而要让他们带着问题去看,可以提出如下两个问题:
(1)转动木条b时,它和不动木条a互相垂直的位置有几个?(认识垂线的唯一性);
(2)当a、b相交有一个角是直角时,其他三个角也都是直角吗?然后找学生回答,以此来增加学生对两直线垂直的感性认识。
(3)对于空间里直线与平面、平面与平面垂直的知识是要求学生了解的内容,不是重点但是难�
教学设计示例
一、素质教育目标
(一)知识教学点
1.使学生掌握垂线的概念。
2.会用三角尺或量角器过一点画一条直线的垂线。
3.使学生理解并掌握垂线的第一个性质。
(二)能力训练点
1.通过对垂线定义做正、反两方面的推理,培养学生的逻辑推理能力。
2.通过垂线的画法,进一步培养学生的实际动手操作能力。
(三)德育渗透点
使学生初步树立辩证唯物主义观点。
(四)通过垂线,使学生进一步体会到几何图形的对称美。
二、学法引导
1.教师教法:活动投影片演示直观教学法,引导发现法.
2.学生学法:在教师的指导下,自主式学习.
三、重点、疑点及解决办法
(一)重点
垂线概念和性质.
(二)难点
垂线的判断和性质的理解运用.
(三)疑点
垂线的性质.
(四)解决办法
通过创设情境,引导学生主动发现性质,并运用练习加以巩固.
四、课时安排
1课时
五、教具学具准备
投影仪、三角尺、量角器、自制胶片.
六、师生互动活动设计
1.通过创设情境,复习基础知识,引入课题.
2.通过教师引导提问,学生思考、互相叙述和纠正,教师点拨,练习巩固新课.
3.通过师生互答完成归纳小结.
七、教学步骤
(一)明明目标
通过画垂线,使学生既能理解并掌握垂线的概念和第一个性质,又能提高学生的动手操作能力.
(二)整体感知
以情境引入课题,以引导学生讨论思考、动手操作和教师点拨相结合完成教学任务,以练习检测为巩固检查手段,强化教学内容.
(三)教学过程
创设情境,复习引入
提出问题:如右图,(1)∠AOC的对顶角是哪个角?这两个角的关系怎样?
(2)∠AOC的邻补角有几个?是哪几个角?
教师演示:(活动投影片)转动直线CD的同时,用量角器量直线AB、CD相交所得的角,多变换几种位置一直转到使直线CD与AB所成的角有一个角∠AOC=90°(如右图).
学生活动:当∠AOC=90°,口答∠BOD、∠AOD、∠BOC等于多少度?为什么?这种位置关系有几种?直线AB、CD的位置关系怎样?学生回答完后,引入课题.
【板书】2.2垂线
【教法说明】因为对顶角、邻补角及对顶角的性质,是建立垂直概念的基础之上,所以在讲新课前要复习巩固这些内容.
探究新知,讲授新课
提出问题:什么样的两条直线互相垂直?
学生活动:学生思考上面的问题,同桌相互叙述,互相纠正补充,语句通顺后举手回答.
教师根据学生回答情况,适当加以引导点拨,然后板书:
【板书】 1.垂直定义
当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的里线,它们的支点叫做垂足.
提出以下问题帮助学生理解定义(投影显示,投影片1)
(1)“有一个角是直角”是指四个角中的哪一个角?
(2)“互相垂直”是什么意思?
(3)相交的两条直线都垂直吗?
【教法说明】用活动投影片演示“两条直线互相垂直”这个概念的产生过程,使学生形成对概念的感性认识再回过头来进行定义,并且从演示过程中看到垂直是两条直线相交的一种特殊情况,认识了事物间的发展变化的辩证关系,提出问题帮助学生理解概念,比教师单纯“强调”效果更好.
学生活动:让学生举出日常生活和生产中常见的垂直关系的实例.(十字路口的两条道路;方格本的横线和竖线;铅垂线和水平线.)
【教法说明】通过举例,启发学生广泛联想,一方面让学生知道两直线垂直的概念是从实物中抽象出来的;另一方面使理论与实际相联系.
2.垂直的记法、读法和判定
学生活动:让学生自己尝试学习,阅读课本第60页的内容,然后师生间相互交流.
归纳:①直线垂直的记法读法:直线AB、CD互相垂直,记作“AB⊥CD”域“CD⊥AB”,读作“AB垂直于CD”,如果垂足为O,记作“AB⊥CD,垂足为O”(如图右上).
②垂直判定:∵∠AOC=90°,
∴AB⊥CD(垂直的定义).
∵AB⊥CD(已知),
∴∠AOC=90°(垂直的定义).
学生活动:用∠AOD、∠BOD或∠BOC让学生重复练习正、反两步推理.
【教法说明】让学生自己尝试学习,可充分发挥学生的积极性、主动性,对垂直定义做正、反两方面的推理可加深学生对定义的`理解,一方面为了渗透符号推理格式,熟悉符号的使用;另一方面可加深学生对定义的理解,定义既可以作判定用,又可以当性质用.
3.垂线的画法及性质
学生活动:让学生用三角板或量角器,过直线上一点或者直线外一点画直线的垂线,回答过直线上(直线外)一点能不能画这条直线的垂线?能画几条?(请一个学生到黑板上去画)
通过画图,得垂线的第一条性质:过一点有且只有一条直线与已知直线垂直.
提出问题:
(1)“过一点”包括几种情况?
(2)“有且只有”是什么意思?(“有”表示存在,“只有”表示惟一.)
【教法说明】垂线的性质放手让学生自己动手画图,自己总结,培养了学生动手,动脑,发现问题和解决问题的能力,达到能力培养的目标.
学生活动:让学生尝试画一条线段或射线的垂线(一个学生板演).
【教法说明】学生画图时,教师巡回指导,发现问题,及时纠正,使学生加深印象,进一步培养学生动手操作能力.
尝试反馈,巩固练习
投影显示(投影片2)
【教法说明】平面内两条直线互相垂直,是一种非常重要的位置关系,本组练习态在使学生会用定义判断两直线垂直,并且应从不同角度去掌握判断它的方法.
投影显示(投影片3)
【教法说明】本组填空题主要是通过变式图形,让学生判断两条直线垂直,防止思维定式.第1题区别垂直相交和外交。第2题通过计算判断两条直线垂直,第3题是巩固两条直线垂直的性质.
投影显示(投影片4)
【教法说明】在前边练习的基础上,学生自己解决并不难,教师要完全放手,开阔学生思路,学生可能出现多种解法,口算、算术解法、列方程等,找一个用方程解决的学生板演,因为这种方法更具有一般性,并通俗易懂,学生易于接受.解这类综合性的题,要求学生能结合图形,发现几何对象在数量上的明显关系及隐含关系并会用代数手段进行计算,另外对几何对象的位置关系要会紧扣定义判断.
投影显示(投影片5)
【教法说明】让学生在理解概念的基础上,多动手练习画垂线,进一步体会垂线的惟一性,同时培养学生的动手操作能力。
(四)总结、扩展
投影显示(投影片6)
【教法说明】通过小结,帮助学生全面地理解掌握所学知识,使知识成为“体系”从而形成新的认知结构。
八、布置作业
(一)必做题
课本第70页习题2.1A组第5题。
(二)选做题
课本第72页B组第5题。
【教法说明】让学有余力的学生进一步做B组练习,目的是调动学生的学习和积极性,提高学生思维广度,培养学生良好的学习习惯和思维方式。
作业答案
九、板书设计
数学教案-垂线
教学过程(师生活动):
提出问题:
某地庆典活动需燃放某种***。为确保人身安全,要求燃放者在点燃***后于燃放前转移到10米以外的地方。已知***的燃烧速度为0.02m/s,人离开的速度是4m/s,***的长_(m)应满足怎样的关系式?
你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程。
探究新知:
1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法。教师规范地板书解的过程。
2、例题。
解下列不等式,并在数轴上表示解集:
(1)_≤50(2)-4_3
(3)7-3_≤10(4)2_-33_+1
分组活动。先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况。教师作总结讲评并示范解题格式。
3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同?
让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。
巩固新知:
1、解下列不等式,并在数轴上表示解集:
(1)(2)-8_10
2、用不等式表示下列语句并写出解集:
(1)_的3倍大于或等于1;
(2)y的的差不大于-2.
解决问题:
测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m的地� 某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?
总结归纳:
围绕以下几个问题:
1、这节课的主要内容是什么?
2、通过学习,我取得了哪些收获?
3、还有哪些问题需要注意?
让学生自己归纳,教师仅做必要的补充和点拨?
教学过程(师生活动):
提出问题:
某地庆典活动需燃放某种***.为确保人身安全,要求燃放者在点燃***后于燃放前转移到10米以外的地方.已知***的燃烧速度为0.02m/s,人离开的速度是4m/s,***的长x(m)应满足怎样的关系式?
你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.
探究新知:
1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.
2、例题.
解下列不等式,并在数轴上表示解集:
(1)x≤50(2)-4x3
(3)7-3x≤10(4)2x-33x+1
分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.
3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同?
让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。
巩固新知:
1、解下列不等式,并在数轴上表示解集:
(1)(2)-8x10
2、用不等式表示下列语句并写出解集:
(1)x的3倍大于或等于1;
(2)y的`的差不大于-2.
解决问题:
测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m的地�
2、过程与方法
经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴对称图形培养学生探索知识的能力与分析问题、思考问题的习惯。
3、情感态度与价值观
让学生在实际操作活动中体验学习数学的乐趣,鼓励他们感受美、欣赏美、创造美,感悟数学知识的魅力,激发学生学习数学的兴趣。
4、教学重点、难点
重点:认识“轴对称图形”和“两个图形成轴对称”的概念,会找出简单轴对称图形的对称轴。难点:了解“轴对称图形”和“两个图形成轴对称”的区别和联系。
二、教学过程
(一)创设情景,引入新课
投影或演示各类具有轴对称特点的图案(如课本上所绘的图象或由学生课前收集的各类具有对称特点的图案)
同学们,在上课之前,我们先来欣赏一组图片:风景秀丽的漓江山水,美轮美奂的建筑艺术,生动形象的京剧脸谱,惟妙惟肖的民间剪纸,方便快捷的交通工具。这些图片美吗?那么老师告诉你们一个秘密,这些图片之所以这么美,是因为他们具有一个共同特征-轴对称现象。
分析各类图案的特点,让学生经历观察和分析,感受到轴对称的美和特征,初步认识轴对称图形。PPT出示学习目标(全班齐读),让学生明确学习目标。
(二)自学检测
1.(1)如果把 个平面图形沿着 对折后,直线两旁的部分能够互相 ,那么这个图形叫做轴对称图形,这条直线叫做 。
(2)老师这里有一些图片,哪位同学能够结合这些图形再加深一下我们对概念的理解呢?
2.(1)如果 个平面图形沿 折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的 。
(2)同样,哪位同学能够结合这些图形再加深一下我们对两个图形成轴对称的理解呢?
3.试举例说明现实生活中也具有轴对称特征的物体,并找出它的对称轴。发展学生想象能力,让学生感到具有轴对称特征的物体,它们都是关于一条直线形成对称。
(三)互动释疑
1.请大家仔细观察!说说两组图片的不同之处和相同之处。
第一组 第二组
请探究 “轴对称图形”和“两个图形成轴对称”的区别和联系。
轴对称图形 两个图形成轴对称
区别 个图形 个图形
联系 1.沿一条直线折叠,直线两旁的部分能够 。2.都有 。3.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线 ;如果把两个成轴对称的图形看成一个图形,那么这个图形就是 。
弄清楚轴对称图形与两个图形成轴对称的区别,两个图形成轴对称是指两个图形之间的形状和位置关系,而轴对称图形是对一个图形而言,轴对称图形是一个具有特殊形状的图形。它们都有沿某条直线对折使直线两旁的图形完全重合的特征。
2、请找出下面轴对称图形的对称轴。
等腰三角形 长方形 等边三角形 正方形 五角星 圆
归纳:①轴对称图形的对称轴可能不止一条。
②一个图形有多条对称轴时,它们相交于一点。
3.如图有四个大小相等的正方形组成“L”型图案。
(1)请你再添加一个正方形,使它变成轴对称图形,并画出对称轴;
(2)请你改变一个正方形的位置,使它变成轴对称图形,并画出对称轴。
实际教学效果:通过与其他小组同学进行讨论学习,各小组都对轴对称图形有深刻认识和理解。
(四)巩固提升
活动内容:进行适当的由浅入深,由感性到理性的一些练习,老师进行了一些必要的讲解,打好学生的知识技能的基础。
1、下列哪些是属于轴对称图形?并画出轴对称图形的对称轴。
2、下列四组图片中有哪几组图形成轴对称?
3、0-9十个数字中,哪些是轴对称图形?
4、下面的字母中,哪些是轴对称图形?
5、中国的汉字也十分注重对称美。猜一猜,这是什么字的一半?
6、如图:在3×3的正方形网格中,已有两个小正方形被涂上颜色.若再将图中其余小正方形任意涂一个,使整个图案构成一个轴对称图形的方法共有( )种,请在下图中画出来。比一比,谁的速度快!
7、下图是由一张纸对折后(两部分完全重合)得到的,展开折纸,你能得到什么样的图形?先想一想,再拼一拼。
(五)课堂小结
今天我们经历观察和分析了现实生活实例和图案,了解了现实生活中存在许多有关对称的事例,认识了轴对称与轴对称图形,并能找出一些简单轴对称图形的对称轴。
(六)布置作业
(1)必做题:习题5.1第1、3题
(2)选做题:动脑筋想一想,再亲手做一做,一张正方形纸片,如何只剪一刀,就得到一个十字形?
三、教学反思
1.以教材为本,但又不拘泥于教材,把握教材但又不被教材所束缚。
2.给学生充分的展示自己才华的机会。
3.注意改进方面:如给学生分组,把握教材的难度和重点,加强对学生的调控,备课要细致等,以利于后面的教学。
板书设计
5.1 轴对称现象
一、轴对称图形
二、两个图形成轴对称
三、轴对称图形和两个图形成轴对称的区别与联系