相反数(精选6篇)

相反数 篇1

【学习目标】

1.使学生能说出相反数的意义

2.使学生能求出已知数的相反数

3.使学生能根据相反数的意思进行化简

【学习过程】

【情景创设】

回忆上节课的情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。点a,点b即是小明到达的位置。

观察a,b两点位置及共到原点的距离,你有什么发现吗?

观察下列各对数,你有什么发现?

‐5与5,‐6.1与6.1,‐34 与+34

相反数的描述性定义:符号不同,绝对值相等的两个数,叫做相反数(只有符号不同)

规定0的相反数是0

想一想:你能举出互为相反数的例子吗?

【例题精讲】

例1

例2

试一试: 化简―[―(+3.2)]

想一想:

请同学们仔细观察这五个等式,它们的符号变化有什么规律?

把一个数的多重符号化成单一符号时,若该数前面有奇数个“―”号,则化简的结果是负;若该数前面有偶数个“―”号,则化简的结果是正。

练一练:填空

(1)-2的相反数是     ,

3.75与               互为相反数,

相反数是其本身的数是     ;

(2)-(+7)=       ,

-(-7)=       ,

-[+(-7)]=      ,

-[-(-7)]=       ;

(3)判断下列语句,正确的是         .

① ―5 是相反数;

② ―5 与 +3 互为相反数;

③ ―5 是 5 的相反数;

④ ―5 和 5 互为相反数;

⑤ 0 的相反数还是 0 .

选择:

(1)下列说法正确的是 (        )

a.正数的绝对值是负数;

b.符号不同的两个数互为相反数;

c.π的相反数是 ―3.14;

d.任何一个有理数都有相反数。

(2)一个数的相反数是非正数,那么这

个数一定是 (        )

a.正数    b.负数     c.零或正数         d.零

画一画:

在数轴上画出表示下列各数以及它们的相反数的点:

动脑筋:

如果数轴上两点 a、b 所表示的数互为相反数,点 a 在原点左侧,且 a、b 两点距离为 8 ,你知道点 b 代表什么数吗?

【课后作业】

1.判断题

(1) 0没有相反数。                                   (     )

(2)任何一个有理数的相反数都与原来的符号相反。        (     )

(3)如果一个有理数的相反数是正数,则这个数是负数。     (     )

(4)只有0的相反数是它本身                           (     )

(5)  互为相反数的两个数绝对值相等

2.填空题

(1) -(-2.8)= _________;    -(+7)= _________;

(2) -3.4的相反数是 ________.

(3) -2.6是________的相反数。

(4)│-3.4│=________;│5.7│=________;

-│2.65│=_______;-│-12.56│=_______

(5)绝对值等于5的数是_________

(6)相反数等于本身的数是__________

3.化简:

(1) -(-1966)=______  (2) +│-1978│=______(3)+(-1983)=______

(4) -(+1997)=_______  (5) +│+│=______

4、选择题:

(1)在-3、+(-3)、-(-4)、-(+2)中,负数的个数有(     )

a、1个       b、2个      c、3个

(2)在+(-2)与-2、-(+1)与+1、-(-4)与+(-4)、

-(+5)与+(-5)、-(-6)与+(+6)、+(+7)与+(-7)

这几对数中,互为相反数的有(   )

a、6对     b、5对     c、4对    d、3对

5、在数轴上标出3、-2.5、2、0、 以及它们的相反数。

6、请在数轴上画出表示3、-2、-3.5及它们相反数的点,并分别用a、b、c、d、e、f来表示

(1)把这6个数按从小到大的顺序用<连接起来

(2)点c与原点之间的距离是多少?点a与点c之间的距离是多少?

相反数 篇2

1.2.3  相反数

教学目标1,  掌握相反数的概念,进一步理解数轴上的点与数的对应关系;2,  通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;3,  体验数形结合的思想。

教学难点归纳相反数在数轴上表示的点的特征

知识重点相反数的概念

教学过程(师生活动)

设计理念

设置情境

引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类4,  -2,-5,+2允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。(引导学生观察与原点的距离)思考结论:教科书第13页的思考再换2个类似的数试一试。归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力培养学生的观察与归纳能力,渗透数形思想

深化主题提炼定义给出相反数的定义问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?学生思考讨论交流,教师归纳总结。规律:一般地,数a的相反数可以表示为-a思考:数轴上表示相反数的两个点和原点有什么关系?练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。深化相反数的概念;“零的相反数是零”是相反数定义的一部分。强化互为相反数的数在数轴上表示的点的几何意义

给出规律

解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?学生交流。分别表示+5和-5的相反数是-5和+5练一练:教科书第14页第二个练习 利用相反数的概念得出求一个数的相反数的方法

小结与作业

课堂小结1,  相反数的定义2,  互为相反数的数在数轴上表示的点的特征3,  怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业1,  必做题 教科书第18页习题1.2第3题2,  选做题 教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)    1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征。这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用。所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想。    2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法。    3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。

附板书:1.2.3  相反数

相反数 篇3

1.2.3  相反数[教学目标]1.       借助数轴,使学生了解相反数的概念 2.       会求一个有理数的相反数 3.       激发学生学习数学的兴趣。 [教学重点与难点]重点: 理解相反数的意义难点: 理解相反数的意义

[教学设计]

提问1、  数轴的三要素是什么?2、  填空:数轴上与原点的距离是2的点有       个,这些点表示的数是         ;与原点的距离是5的点有       个,这些点表示的数是          。新课相反数的概念:只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。概念的理解:(1)       互为相反数的两个数分别在原点的两旁,且到原点的距离相等。(2)       一般地,数a的相反数是 , 不一定是负数。(3)       在一个数的前面添上“-”号,就表示这个数的相反数,如:-3是3的相反数,-a是a的相反数,因此,当a是负数时,-a是一个正数-(-3)是(-3)的相反数,所以-(-3)=3,于是(4)       互为相反数的两个数之和是0                 & ww w. nbsp;                                       即如果x与y互为相反数,那么x+y=0;反之,若x+y=0, 则x与y互为相反数(5)       相反数是指两个数之间的一种特殊的关系,而不是指一个种类。如:“-3是一个相反数”这句话是不对的。例1 求下列各数的相反数:(1)-5             (2)           (3)0(4)              (5)-2b          (6) a-b (7) a+2例2 判断:(1)-2是相反数(2)-3和+3都是相反数(3)-3是3的相反数(4)-3与+3互为相反数(5)+3是-3的相反数(6)一个数的相反数不可能是它本身例3 化简下列各数中的符号:(1)         (2)-(+5)(3)         (4) 例4 填空:(1)a-4的相反数是        ,3-x的相反数是        。(2) 是       的相反数。(3)如果-a=-9,那么-a的相反数是          。例5 填空:(1)若-(a-5)是负数,则a-5      0.(2)  若 是负数,则x+y        0.例6 已知a、b在数轴上的位置如图所示。(1)       在数轴上作出它们的相反数;(2)       用“<”按从小到大的顺序将这四个数连接起来。例7 如果a-5与a互为相反数,求a.练习:教材14页小节:相反数的概念及注意事项作业:18页第3题课题: 1.2.3  相反数

教学目标1,  掌握相反数的概念,进一步理解数轴上的点与数的对应关系;2,  通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;3,  体验数形结合的思想。

教学难点归纳相反数在数轴上表示的点的特征

知识重点相反数的概念

教学过程(师生活动)

设计理念

设置情境

引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类4,  -2,-5,+2允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。(引导学生观察与原点的距离)思考结论:教科书第13页的思考再换2个类似的数试一试。归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力培养学生的观察与归纳能力,渗透数形思想

深化主题提炼定义给出相反数的定义问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?学生思考讨论交流,教师归纳总结。规律:一般地,数a的相反数可以表示为-a思考:数轴上表示相反数的两个点和原点有什么关系?练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。深化相反数的概念;“零的相反数是零”是相反数定义的一部分。强化互为相反数的数在数轴上表示的点的几何意义

给出规律

解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?学生交流。分别表示+5和-5的相反数是-5和+5练一练:教科书第14页第二个练习 利用相反数的概念得出求一个数的相反数的方法

小结与作业

课堂小结1,  相反数的定义2,  互为相反数的数在数轴上表示的点的特征3,  怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业1,  必做题 教科书第18页习题1.2第3题2,  选做题 教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)    1、相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征。这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用。所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想。    2、教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法。    3、本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。

探究活动 篇4

有理数a、b在数轴上的位置如图:

将a,-a,b,-b,1,-1用“<”号排列出来.

分析:由图看出,a>1,-1<b<0,|b|<1<|a|.-a,-b分别是a和b的相反数,数轴上表示a和-a,b和-b的点都关于原点对称,它们到原点的距离分别相等,用这个性质在数轴上画出表示-a,-b的点,它们的大小也就排列出来了.

解:在数轴上画出表示-a、-b的点:

由图看出:-a<-1<b<-b<1<a.

点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.

相反数 篇5

学习目标:1、掌握相反数的概念,与绝对值的关系;互为相反数的几何意义。2、发展学生的符号感,培养学生的数形结合意识。

学习重点、难点:1、互为相反数的几何意义;2、渗透的数学方法与数学思想:数形结合、普遍联系的思想。

学习过程

一、课前预习

复习提问:什么是一个数的绝对值,怎么求?

(1)-3的绝对值为                =

=                  =

(2)           的绝对值为5,          的绝对值为0

若 =3  则a=         , 若 =-10  则a=

(3)总结:一个数的绝对值可用若 表示, ≥0

一个数的绝对值表示这个数在数轴上表示的点到原点的距离。

二、课堂学习

+5、-5之间有什么关系?

我们把这样的两个数叫互为相反数

▲符号不同,绝对值相同的两个数叫互为相反数,其中一个数是另一个数的相反数。

例1:求3、-4.5、的相反数

小结:求一个数的相反数只要在这个数前面加上“-”

例:-4.5的相反数为-(-4.5)=+4.5

练:说出-(+3)   -(-0.5)的含义

例2:化简:

问题:我们了解相反数的意义,及相反数的求法,你对相反数有何自己的看法或解释?

几何解释:从数轴上看,互为相反数在原点的两侧,到原点的距离相等。

练习:23页练一练

课堂练习:

(1)化简:

(2)一个数在数轴上对应的点向右移动5个单位长度后,得到它的相反数的对应点,则这个数

(3)a的相反数为         ,    一定是负数吗?举例说明。

(4)在数轴上标出 , 的点,并用“<”或“>”填充:

(1)       0  ,       0 ,      ,

(2)      ,         ,

(3)      ,

三、课堂检测

(一)、选择题:

1、的相反数是                                (    )

a       b    2    c  -2     d

2、下列各对数中互为相反数的是                       (    )

a  -2与  b  与2    c  -2.5 与   d  与

3、有理数中负数的个数是  (    )

a  1个   b  2个   c   3个   d    4个

4、一个数的相反数小于原数,这个数是                 (    )

a 正数   b   负数    c   0     d   整数

(二)、填充:

1、一个数的相反数是它本身,这个数是                。

2、如果的相反数为 -7则=

3、化简:(1)=            (2)

(3) =             (4)=

4、若a、b表示互为相反数,a在b的右侧,并且这两点间的距离为2.4,则这两点所表示的数分别为

(三)、解答题:

1、写出下列各数的相反数:0, 58,-4, 3.14,

2、-(-7)是_____________的相反数,-(+4)是_____________的相反数。

四、作业布置

1、到原点的距离是5个单位长度的数是         ,它们的关系是              。

2、化简:         ,            ,

3、比较大小:       -(-4.4)

4、若>0 则=                若<0    则=

5、若的相反数是6.5  则=

6、把下列各数填入相应的集合里

整数集合:{                   … } 正数集合:{                  … }

负分数集合:{                     …}

7、在数轴上分别用点a、b、c表示。并用点d、e、f表示它们的相反数,并把它们(包括它们的相反数)用“<”连接。

8、如果的相反数是  ,求的值。

★     9、已知:a>0,b<0 ,且<。请结合数轴用“<”连接

相反数 篇6

本节课我是根据“新课标”的教学思想设计并实施的。我尽力激发学生学习的积极性,向学生提供活动的机会,帮助他们在自主探索和合作交流的过程中真正地理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。在整个教学过程中,学生是学习的主人,我是组织者、引导者和合作者。

在整节课的教学中我觉得做得比较好的地方是:一个操作、三个讨论。

相反数这节课是在数轴一节课后学习的,而数轴又是初中数形结合的一个重要图形,所以我重点利用数轴对相反数进行讲解。我让学生在一张白纸上画数轴,并将数轴沿原点对折,感受互为相反数的两数的对称性。通过对折还比较容易地解决了0的相反数是0这一难点。(因为对折后原点与本身重合。)

本节课我设计了三个地方让学生分组讨论。第一次讨论是通过观察两个互为相反数的两数,讨论它们的异同点及在数轴上的位置关系;第二次讨论是让学生讨论是否任何有理数都有相反数;第三次讨论是让学生讨论化简双重符号的数的规律。通过参与其中某些组的讨论,我感觉到学生通过讨论既加深了对数学知识的理解,又增强的合作交流的能力。特别是对0是否有相反数的讨论,同学们都很投入,讨论得很激烈,有的认为有,有的认为无,他们都各持己见,最后  在我的引导下得出0的相反数是0的结论。

本节课的教学我也觉得有不足的地方。首先是我的普通话讲得不够流利,在表达感情时受到了一定的影响,我以后在这方面会多作锻炼。其次就是我设置的三次讨论的时间都比较短,每次都只有2——3分钟,学生讨论得不够深入。可能设置少一两次讨论,而讨论的时间长一点会更好。最后就是这节课针对中考的练习少了一点。这些都是我以后在教学中要加强的。

一键复制全文保存为WORD
相关文章