一元二次方程的根与系数的关系【4篇】

初中数学知识点总结之一元二次方程根与系数的关系这次为您整理了一元二次方程的根与系数的关系【4篇】,希望能够给予您一些参考与帮助。

元二次方程根与系数关系 篇1

一元二次方程(一)

一、素质教育目标

(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项。

(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性。

(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识。

二、教学重点、难点

1.教学重点:一元二次方程的意义及一般形式。

2.教学难点 :正确识别一般式中的“项”及“系数”。

三、教学步骤

(一)明确目标

1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程。学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力。

2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?

教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题。

板书:“第十二章一元二次方程”。教师恰当的语言,激发学生的求知欲和学习兴趣。

(二)整体感知

通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中。同时让学生感到一元二次方程的解法在本章中处于非常重要的地位。

(三)重点、难点的学习及目标完成过程

1.复习提问

(1)什么叫做方程?曾学过哪些方程?

(2)什么叫做一元一次方程?“元”和“次”的含义?

(3)什么叫做分式方程?

问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫。

2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?

引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念。

整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程。

一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程。

一元二次方程的概念是在整式方程的前提下定义的。一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”。“元”和“次”的概念搞清楚则给定义一元三次方程等打下基础。一元二次方程的定义是指方程进行合并同类项整理后而言的。这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行判断。

3.练习:指出下列方程,哪些是一元二次方程?

(1)x(5x-2)=x(x+1)+4x2;

(2)7x2+6=2x(3x+1);

(3)

(4)6x2=x;

(5)2x2=5y;

(6)-x2=0

4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式。

一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数。

一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解。

5.例1  把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?

教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式。

6.练习1:教材P.5中1,2.要求多数学生在练习本上笔答,部分学生板书,师生评价。题目答案不唯一,最好二次项系数化为正数。

练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项。

8mx-2m-1=0;(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.

教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化。

(四)总结、扩展

引导学生从下面三方面进行小结。从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?

1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法。

2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项。归纳所学过的整式方程。

3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系。强调“a≠0”这个条件有长远的重要意义。

四、布置作业

1.教材P.6 练习2.

2.思考题:

1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”

2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).

五、板书设计

第十二章  一元二次方程

12.1用公式解一元二次方程

1.整式方程:……

4.例1:……

2.一元二次方程……:

……

3.一元二次方程的一般形式:

……

5.练习:……

……

……

12.6  一元二次方程的应用(二)

一、素质教育目标

(一)知识教学点:使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题。

(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识。

(三)德育渗透点:进一步使学生深刻体会转化以及方程的思想方法、渗透数形结合的思想。

二、教学重点、难点

1.教学重点:会用列一元二次方程的方法解有关面积、体积方面的应用题。

2.教学难点 :找等量关系。列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解。例如线段的长度不为负值,人的个数不能为分数等。

三、教学步骤

(一)明确目标

初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决,但有的实际问题,列出的方程不是一元一次方程,而是一元二次方程,这就是我们本节课要研究的一元二次方程的应用——有关面积和体积方面的实际问题。

(二)整体感知

本小节是“一元一次方程的应用”的继续和发展。由于能用一元一次方程(或一次方程组)解的应用题,一般都可以用算术方法解,而需用一元二次方程来解的应用题,一般说是不能用算术法来解的,所以,讲解本小节可以使学生认识到用代数方法解应用题的优越性和必要性。

从列方程解应用题的方法来说,列出一元二次方程解应用题与列出一元一次方程解应用题类似,都是根据问题中的相等关系列出方程、解方程、判断根是否适合题意,作出正确的答案。列出一元二次方程,其应用相当广泛,如在几何、物理及其他学科中都有大量问题存在;本节课的内容是关于面积、体积的实际问题。

通过本节课学习,培养学生将实际问题转化为数学问题的能力以及用数学的意识,渗透转化的思想、方程的思想及数形结合的思想。

(三)重点、难点的学习和目标完成过程

1.复习提问

(1)列方程解应用题的步骤?

(2)长方形的周长、面积?长方体的体积?

2.例1  现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?

解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19-2x)cm,宽为(15-2x)cm,

据题意:(19-2x)(15-2x)=77.

整理后,得x2-17x+52=0,

解得x1=4,x2=13.

∴  当x=13时,15-2x=-11(不合题意,舍去。)

答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子。

本题教师启发、引导、学生回答,注意以下几个问题。

(1)因为要做成底面积为77cm2的无盖的长方体形的盒子,如果底面的长和宽分别能用含未知数的代数式表示,这样依据长×宽=长方形面积,便可以找准等量关系,列出方程,这是解决本题的关键。

(2)求出的两个根一定要进行实际题意的检验,本题如果截取的小正方形边长为13时,得到底面的宽为-11,则不合题意,所以x=13舍去。(3)本题是一道典型的实际生活的问题,在学习本章之前,这个问题无法解决,但学了一元二次方程的知识之后,这个问题便可以解决。使学生深刻体会数学知识应用的价值,由此提高学生学习数学的兴趣和用数学的意识。

练习1.章节前引例。

学生笔答、板书、评价。

练习2.教材P.42中4.

学生笔答、板书、评价。

注意:全面积=各部分面积之和。

剩余面积=原面积-截取面积。

例2  要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0.1cm)?

分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程。

解:长方体底面的宽为xcm,则长为(x+5)cm,

解:长方体底面的宽为xcm,则长为(x+5)cm,

据题意,6x(x+5)=750,

整理后,得x2+5x-125=0.

解这个方程x1=9.0,x2=-14.0(不合题意,舍去).

当x=9.0时,x+17=26.0,x+12=21.0.

答:可以选用宽为21cm,长为26cm的长方形铁皮。

教师引导,学生板书,笔答,评价。

(四)总结、扩展

1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系。

2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负。

3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力。

元二次方程根与系数关系 篇2

一、素质教育目标

(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项。

(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性。

(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识。

二、教学重点、难点

1.教学重点:一元二次方程的意义及一般形式。

2.教学难点 :正确识别一般式中的“项”及“系数”。

三、教学步骤

(一)明确目标

1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程。学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力。

2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?

教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题。

板书:“第十二章一元二次方程”。教师恰当的语言,激发学生的求知欲和学习兴趣。

(二)整体感知

通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中。同时让学生感到一元二次方程的解法在本章中处于非常重要的地位。

(三)重点、难点的学习及目标完成过程

1.复习提问

(1)什么叫做方程?曾学过哪些方程?

(2)什么叫做一元一次方程?“元”和“次”的含义?

(3)什么叫做分式方程?

问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫。

2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?

引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念。

整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程。

一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程。

一元二次方程的概念是在整式方程的前提下定义的。一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”。“元”和“次”的概念搞清楚则给定义一元三次方程等打下基础。一元二次方程的定义是指方程进行合并同类项整理后而言的。这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行判断。

3.练习:指出下列方程,哪些是一元二次方程?

(1)x(5x-2)=x(x+1)+4x2;

(2)7x2+6=2x(3x+1);

(3)

(4)6x2=x;

(5)2x2=5y;

(6)-x2=0

4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式。

一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数。

一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解。

5.例1  把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?

教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式。

6.练习1:教材P.5中1,2.要求多数学生在练习本上笔答,部分学生板书,师生评价。题目答案不唯一,最好二次项系数化为正数。

练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项。

8mx-2m-1=0;(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.

教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化。

(四)总结、扩展

引导学生从下面三方面进行小结。从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?

1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法。

2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项。归纳所学过的整式方程。

3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系。强调“a≠0”这个条件有长远的重要意义。

四、布置作业

1.教材P.6 练习2.

2.思考题:

1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”

2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).

五、板书设计

第十二章  一元二次方程

12.1用公式解一元二次方程

1.整式方程:……

4.例1:……

2.一元二次方程……:

……

3.一元二次方程的一般形式:

……

5.练习:……

……

……

12.6  一元二次方程的应用(二)

一、素质教育目标

(一)知识教学点:使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题。

(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识。

(三)德育渗透点:进一步使学生深刻体会转化以及方程的思想方法、渗透数形结合的思想。

二、教学重点、难点

1.教学重点:会用列一元二次方程的方法解有关面积、体积方面的应用题。

2.教学难点 :找等量关系。列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解。例如线段的长度不为负值,人的个数不能为分数等。

三、教学步骤

(一)明确目标

初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决,但有的实际问题,列出的方程不是一元一次方程,而是一元二次方程,这就是我们本节课要研究的一元二次方程的应用——有关面积和体积方面的实际问题。

(二)整体感知

本小节是“一元一次方程的应用”的继续和发展。由于能用一元一次方程(或一次方程组)解的应用题,一般都可以用算术方法解,而需用一元二次方程来解的应用题,一般说是不能用算术法来解的,所以,讲解本小节可以使学生认识到用代数方法解应用题的优越性和必要性。

从列方程解应用题的方法来说,列出一元二次方程解应用题与列出一元一次方程解应用题类似,都是根据问题中的相等关系列出方程、解方程、判断根是否适合题意,作出正确的答案。列出一元二次方程,其应用相当广泛,如在几何、物理及其他学科中都有大量问题存在;本节课的内容是关于面积、体积的实际问题。

通过本节课学习,培养学生将实际问题转化为数学问题的能力以及用数学的意识,渗透转化的思想、方程的思想及数形结合的思想。

(三)重点、难点的学习和目标完成过程

1.复习提问

(1)列方程解应用题的步骤?

(2)长方形的周长、面积?长方体的体积?

2.例1  现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?

解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19-2x)cm,宽为(15-2x)cm,

据题意:(19-2x)(15-2x)=77.

整理后,得x2-17x+52=0,

解得x1=4,x2=13.

∴  当x=13时,15-2x=-11(不合题意,舍去。)

答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子。

本题教师启发、引导、学生回答,注意以下几个问题。

(1)因为要做成底面积为77cm2的无盖的长方体形的盒子,如果底面的长和宽分别能用含未知数的代数式表示,这样依据长×宽=长方形面积,便可以找准等量关系,列出方程,这是解决本题的关键。

(2)求出的两个根一定要进行实际题意的检验,本题如果截取的小正方形边长为13时,得到底面的宽为-11,则不合题意,所以x=13舍去。(3)本题是一道典型的实际生活的问题,在学习本章之前,这个问题无法解决,但学了一元二次方程的知识之后,这个问题便可以解决。使学生深刻体会数学知识应用的价值,由此提高学生学习数学的兴趣和用数学的意识。

练习1.章节前引例。

学生笔答、板书、评价。

练习2.教材P.42中4.

学生笔答、板书、评价。

注意:全面积=各部分面积之和。

剩余面积=原面积-截取面积。

例2  要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0.1cm)?

分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程。

解:长方体底面的宽为xcm,则长为(x+5)cm,

解:长方体底面的宽为xcm,则长为(x+5)cm,

据题意,6x(x+5)=750,

整理后,得x2+5x-125=0.

解这个方程x1=9.0,x2=-14.0(不合题意,舍去).

当x=9.0时,x+17=26.0,x+12=21.0.

答:可以选用宽为21cm,长为26cm的长方形铁皮。

教师引导,学生板书,笔答,评价。

(四)总结、扩展

1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系。

2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负。

3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力。

元二次方程的根与系数的关系 篇3

一、教学目标 

1.掌握一元二次方程根与系数的关系式,能运用它由已知一元二次方程的一个根求出另一个根与未知系数;

2.通过根与系数的教学,进一步培养学生分析、观察、归纳的能力和推理论证的能力;

3.通过本节课的教学,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。

教学重点和难点:

二、重点·难点·疑点及解决办法

1.教学重点:根与系数的关系及其推导。

2.教学难点 :正确理解根与系数的关系。

3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系。

4.解决办法;在实数范围内运用韦达定理,必须注意这个前提条件,而应用判别式的前提条件是方程必须是一元二次方程,即二次项系数,因此,解题时,要根据题目分析题中有没有隐含条件和。

三、教学步骤

(一)教学过程 

1.复习提问

(1)写出一元二次方程的一般式和求根公式。

(2)解方程①,②。

观察、思考两根和、两根积与系数的关系。

在教师的引导和点拨下,由沉重得出结论,教师提问:所有的一元二次方程的两个根都有这样的规律吗?

2.推导一元二次方程两根和与两根积和系数的关系。

设是方程的两个根。

以上一名学生板书,其他学生在练习本上推导。

由此得出,一元二次方程的根与系数的关系。(一元二次方程两根和与两根积与系数的关系)

结论1.如果的两个根是,那么。

如果把方程变形为。

我们就可把它写成

的形式,其中。从而得出:

结论2.如果方程的两个根是,那么。

结论1具有一般形式,结论2有时给研究问题带来方便。

练习1.(口答)下列方程中,两根的和与两根的积各是多少?

(1);(2);(3);

(4);(5);(6)

此组练习的目的是更加熟练掌握根与系数的关系。

3.一元二次方程根与系数关系的应用。

(1)验根。(口答)判定下列各方程后面的两个数是不是它的两个根。

①;②;③;

④;⑤。

验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:(1)要先把一元二次方程化成一般形式,(2)不要漏除二次项系数,(3)还要注意中的负号。

(2)已知方程一根,求另一根。

例:已知方程的根是2,求它的另一根及k的值。

解法1:设方程的另一根为,那么。

又  ∵  。

答:方程的另一根是,k的值是-7。

此题的解法是依据一元二次方程根与系数的关系,设未知数列方程达到目的,还可以向学生展现下列方法,并且作比较。

方法(二)  ∵  2是方程的根,

∴  原方程可变为

解此方程。

方法(三)∵  2是方程的根,

答:方程的另一根是,k的值是-7。

学生进行比较,方法(二)不如方法(一)和(三)简单,从而认识到根与系数关系的应用价值。

练习:教材P32)○(中2。

学习笔答、板书,评价,体会。

(二)总结、扩展

(12)    一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积和系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力

3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

四、布置作业

教材P32中1  P33中A1。

五、板书设计 

元二次方程的根与系数的关系 篇4

一、教学目标

1.掌握一元二次方程根与系数的关系式,能运用它由已知一元二次方程的一个根求出另一个根与未知系数;

2.通过根与系数的教学,进一步培养学生分析、观察、归纳的能力和推理论证的能力;

3.通过本节课的教学,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。

教学重点和难点:

二、重点·难点·疑点及解决办法

1.教学重点:根与系数的关系及其推导。

2.教学难点:正确理解根与系数的关系。

3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系。

4.解决办法;在实数范围内运用韦达定理,必须注意这个前提条件,而应用判别式的前提条件是方程必须是一元二次方程,即二次项系数,因此,解题时,要根据题目分析题中有没有隐含条件和。

三、教学步骤

(一)教学过程

1.复习提问

(1)写出一元二次方程的一般式和求根公式。

(2)解方程①,②。

观察、思考两根和、两根积与系数的关系。

教师的引导和点拨下,由沉重得出结论,教师提问:所有的一元二次方程的两个根都有这样的规律吗?

2.推导一元二次方程两根和与两根积和系数的关系。

设是方程的两个根。

以上一名学生板书,其他学生在练习本上推导。

由此得出,一元二次方程的根与系数的关系。(一元二次方程两根和与两根积与系数的关系)

结论1.如果的两个根是,那么。

如果把方程变形为。

我们就可把它写成

的形式,其中。从而得出:

结论2.如果方程的两个根是,那么。

结论1具有一般形式,结论2有时给研究问题带来方便。

练习1.(口答)下列方程中,两根的和与两根的积各是多少?

(1);(2);(3);

(4);(5);(6)

此组练习的目的是更加熟练掌握根与系数的关系。

第 1 2 页

一键复制全文保存为WORD
相关文章