八年级《等腰三角形》数学教案【优秀6篇】

作为一名默默奉献的教育工作者,常常要写一份优秀的教案,教案是教学活动的总的组织纲领和行动方案。那么优秀的教案是什么样的呢?下面是的小编为您带来的八年级《等腰三角形》数学教案【优秀6篇】,如果对您有一些参考与帮助,请分享给最好的朋友。

初中数学等腰三角形的性质教案 篇1

一、教材分析

1、教材的地位和作用

等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。

2、教材重组

《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

3、学习目标

根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:

知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。

情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

4、教学重、难点:

重点:等腰三角形性质的探索及其应用。

难点:等腰三角形性质的探索及证明。

5、突破难点策略:

通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

二、学情分析

刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。

三、教法分析

《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。

四、学法建构

《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:

1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。

2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。

五、教学模式

本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。

《数学课程标准》提出了“问题情境——建立模型——解释、运用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养,提高学生的自主意识和合作精神。

六、教学程序和设想

《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。据此本节课我分以下环节组织教学。

(一)创设情境,观察联想

1、多媒体展示电视转播台、房屋人字架,让学生观察找出其中的几何图形?(等腰三角形、四边形、梯形)

2、两幅图中都有哪种几何图形?(等腰三角形)

从学生身边的生活和已有知识出发,创设情境,引导学生观察、联想,使学生感受到生活中处处有数学,并学会从数学的角度去观察事物,思考问题,激发学生对学习数学的兴趣和愿望。

(二)动手操作,揭示课题

1、什么是等腰三角形?等边三角形?它们有何关系?

2、请学生动手作等腰三角形ABC,使AB=AC。裁下这个三角形,再动手折叠,当两腰重合时,找出发现哪些结论。

3、小组交流发现的结论。(两底重合,折痕是顶角角平分线,底边上的高,底边上的中线。 )

4、小组代表用语言表达得出的结论。

5、多媒体演示折叠过程,再现归纳得出的结论。

6、揭示、板书课题:等腰三角形性质。ト醚生温习、重现已学相关知识,为学习新知识做铺垫。

波利亚曾说过:“学习任何知识的最佳途径都是由自己去发现。”《新课程标准》要求通过实践、思考探索、交流获得知识,所以我在这里力图通过学生动手操作、动眼观察、动口交流表达,使学生充分感知等腰三角形性质。

(三)独立思考,探究新知

对于观察得出的结论是否能进行论证,请学生动手试一试。

放手让学生决定自己的探索方向,鼓励学生选用不同的方法,把期望带给学生,让学生最大限度地发现自己的潜能,使学生形成自己对数学知识的理解和有效的学习策略。

(四)合作探究,交流创新

当部分同学找到了问题的突破口,而少数找不到思路的同学也充分感知了困难,尝试了困难后,及时组织学生进行合作探究和交流,并作为合作者参与到学生的交流中。

组织学生探索、交流,有利于开阔学生的视野,形成一个既有独立思考,又有互相合作,广泛交流的学习氛围,培养学生合作精神。

(五)引导评价,形成规律

1、小组合作交流后,请各小组一名代表上台讲解(给学困生提供上台机会,让他们尝试成功的喜悦)共有三种辅助方法:

作∠A的角平分线AD、作 AD⊥BC、作BC边上的中线AD。

通过师生、生生的相互补充评价,将探究活动引向深入,强化学生的创新思维训练。

2、等边三角形是特殊等腰三角形,它又具有哪些性质呢?

学生探索能得出:

①每个角都相等,且都是60°,

②每边上的高、中线、角平分线互相重合。

运用知识迁移在新知识的基础上探索新的未知,把学生的探究兴趣进一步推向高潮,激励学生要敢于迎接挑战,不断追求,锻炼意志。

13、阅读课本:等腰三角形性质(一)

(注意:等边对等角、三线合一的几何语言表达)。培养学生的阅读能力和准确的几何语言表达能力。

(六)实践应用,巩固提高

例:已知房屋的顶角∠ABC=100°,过屋顶的立柱AD⊥BC,屋椽AB=AC,根据图中条件,你能求出哪些角的度数。

把例题改编成开放题,为学生再一次创设探究情境,进一步培养学生的探究能力和思维的广阔性、灵活性。ゴ锉炅废(抢答)

①填空。设计基础练习,体现素质教育的全员性,通过抢答训练,更好地激发学生的学习兴趣和求知欲望。

②△ABC中,AB=AC,D为BC上一点,DE⊥AB,FD⊥BC交AC于F点,∠A=56°,求∠ EDF的度数,提高学生分析问题和解决问题的实践能力。

③应用:某厂车间的人字屋架为等腰三角形,跨度AB=12米,为使屋架更加牢固,需安装中柱CD,你能帮工人师傅确定中柱的位置吗?说明选用的工具和原理。ソ一步体现数学来源于实践,又应用于实践,培养学生的应用意识和应用能力。

(七)反思归纳,形成结构

1、引导学生对学习过程进行小结:

①本节课你有哪些收获?(知识、方法、技能),你认为重点是什么?

②所学知识能解决哪些实际问题?

③本节课所运用的学习方法对你今后学习有什么启示?

2、布置作业:(分层布置)

这样进行课堂小结,关注学生个体差异,使每一个学生都有成功的学习体验,得到相应的提高和发展,进一步培养学生的主体意识,锻炼学生的归纳总结能力。

初中数学等腰三角形的性质教案 篇2

教学目标

1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

3、结合实例体会反证法的含义。

教学重点

等腰三角形的关性质定理和判定定理。

教学难点

能够用综合法证明等腰三角形的关性质定理和判定定理。

教学方法

教学后记

教学内容及过程

教师活动学生活动

一、等腰三角形性质的探究

1.让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。

2.播放课件,结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔。

3.分别演示:

∠ABC,∠ACE=∠ACB,k=,时,BD是否与CE相等。引导学生探究、猜测当k为其他整数时,BD与CE的关系。

4.引导学生探究,对于上述例题,当AD=AC,AE=AB,k=,时,通过对例题的引申,培养学生的发散思维,经历探究—猜测—证明的学习过程。

5.引导学生进一步推广,把上面3、4中的k取一般的自然数后,原结论是否仍然成立?要求学生说明理由或给出证明。

6.对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明。

7.提出新的问题,引导学生从“等角对等边”这个命题的反面思考问题,即思考它的逆命题是否成立。适时地引导学生思考可以用哪些方法证明?培养学生的推理能力。

8.归纳学生提出的各种证法,清楚的分析证明的思路,培养学生演绎证明的初步的推理能力。

9.启发学生思考:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,这个结论是否成立?如果成立,能否证明。这实际上是“等边对等角”的逆否命题,通过这样的表述可以提高学生的思维能力。

10.总结这一证明方法,叙述并阐释反证法的含义,让学生了解。

11.小结这两个课时的内容。

等腰三角形的教学设计 篇3

【教学目标】

教学知识点

1.等腰三角形的概念。

2.等腰三角形的性质。

3.等腰三角形的概念及性质的应用。

能力训练要求

1.经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点。

2.探索并掌握等腰三角形的性质。

情感与价值观要求

通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯。

【教学重难点】

重点:

1.等腰三角形的概念及性质。

2.等腰三角形性质的应用。

难点:等腰三角形三线合一的性质的理解及其应用。

【教学过程】

一、提出问题,创设情境

师:在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

[生]有的三角形是轴对称图形,有的三角形不是。

师:那什么样的三角形是轴对称图形?

[生]满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

师:很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

二、探究新知:

(一)等腰三角形的定义:

【活动1】折纸、剪纸、展纸:

观察△ABC的特点:

(1)在上述过程中,△ABC被剪刀剪过的两边是否相等?

(2)由此你能说说什么是等腰三角形吗?

归纳:有两条边相等的三角形叫等腰三角形。其中相等的两条边叫腰,另一条边叫做底边;两腰所夹的角叫顶角,底边和腰所夹的角叫底角。

(二)探索等腰三角形的性质:

【活动2】观察△ABC:(1)等腰△ABC是轴对称图形吗?它的对称轴是什么?

(2)沿着等腰△ABC中AD所在的直线对折,找出重合的线段、重合的角。

归纳:性质1、等腰三角形的两个底角相等(简写成“等边对等角”)

性质2、等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简记为“三线合一”)

(三)等腰三角形性质的证明:

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程。

《等腰三角形》教学反思 篇4

这一课的教学重点是等腰三角形的判定定理及应用。教学难点是等腰三角形的性质定理与判定定理的区别。教学方法主要是讨论、探索、启发式。运用辅助工具是多媒体课件。

等腰三角形是一类特殊的三角形,因而它比一般的三角形在理论和实际中的应用更为广泛。教材专门设计一个单元的内容来研究它。这个单元的重点之一就是等腰三角形的判定,同时这也是本章的重点之一。大纲对此的要求是“掌握等腰三角形的性质和判定,等边三角形的性质和判定,并能灵活应用它们进行论证和计算”(“灵活应用”是大纲中“了解、理解、掌握、灵活应用”四个层次中的最高要求)。在学过等腰三角形的性质和判定后,推理依据增多了,学生所接触到的题目难度也会明显加大,证明思路不再那么简单。近几年的许多中考题目常以等腰三角形为命题背景,结合四边形、相似形、圆、函数等相关知识点出一些综合性题目和压轴题目。所以要求学生能掌握并灵活应用。

学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定的了解和认识。学生在这个阶段逐渐在各方面开始成熟,思维深刻性有了明显提高,有着自己独特内心世界,有着独特认识问题和解决问题的思维方式。

因此在课堂教学中先引出等腰三角形的判定定理及推论,并能够灵活应用它进行有关论证和计算。发展学生的动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想。再进一步发展学生独立思考、勇于探索的创新精神和关于数学内容间普遍存在的相互联系、相互转化的观点。

《等腰三角形》教学反思 篇5

本节课《等腰三角形》的活动是从回顾轴对称图形的性质入手。因为等腰三角形是一种特殊的三角形,而等腰三角形是轴对称图形。为此,教材把本节内容安排在了轴对称之后。我利用旧知的复习唤起学生对等腰三角形的记忆。然后通过让学生预习,折纸、剪纸、猜想、验证等腰三角形的性质,并运用全等三角的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,使学生在生动有趣的数学活动中探究出等腰三角形的性质,从而实现教学目的。

教学设计上,我把重点放在了学生交流展示和解疑点评上,由个别形象到一般抽象,体现出了学生从感性认识到理性知识发生发展的认知过程。在教学过程中,我注重引导学生对解题思路和方法进行总结,渗透化归思想与分类讨论数学思想;注重培养学生形成积极探索、主动学习的态度,关注学生学习兴趣和体验,充分体现数学教学主要是数学活动的教学;注重培养学生之间的合作、交流意识与语言表达能力,增强小组合作意识。

存在的问题:

1、本课主要放在学生知识的形成过程上,因此对等腰三角形性质的应用及知识的拓展方面较薄弱,显得深度不够。还需要在习题的设计上来补充体现。

2、课堂气氛虽热烈,学生对“三线合一”这一新名词很感兴趣,但还是难免一些同学只是凑热闹,并非真正学得真知的缺陷。要引导学生真正理解和体会几何语言的的魅力。

等腰三角形 篇6

9.3章等腰三角形教案

(一)、温故知新,激发情趣:

1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?

2、指出等腰三角形的腰、底边、顶角、底角。

(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。)

(二) 、构设悬念,创设情境:

3、一般三角形有哪些特征? (三条边、三个内角、高、中线、角平分线)

4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?

(把问题3作为教学的出发点,激发学生的学习兴趣。问题4给学生留下悬念。)

(三)、目标导向,自然引入:

本节课我们一起研究——9.3 等腰三角形

(板书课题) 9.3 等腰三角形(了解本节课的学习内容)

(四)、设问质疑,探究尝试:

结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。

[问题]通过观察,你发现了什么结论?

(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)

[结论]等腰三角形的两个底角相等。

(板书学生发现的结论)

等腰三角形特征1:等腰三角形的两个底角相等

在△ ABC中,∵AB=AC( )

∴∠B=∠C( )

[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。

例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数。

〔学生思考,教师分析,板书〕

练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)

〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)

[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?

(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)

[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?

[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。

[结论]等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。简称为:“三线合一”。

等腰三角形特征2:

等腰三角形的顶角平分线、底边上的中线和高线互相重合(三线合一)

(出示小黑板)

[填空]根据等腰三角形特征的推论,在△ABC中

(1)∵AB=AC,AD⊥BC,

∴∠_=∠_,_=_;

(2)∵AB=AC,AD是中线,

∴∠_=∠_,_⊥_;

(3)∵AB=AC,AD是角平分线,

∴_⊥_,_=_

通过直观模具演示,引出推论2,并出示小黑板[填空]、强调“三线合一”的运用方法。使学生留下深刻印象,并通过[填空]了解三线合一的运用方法。

强调“三线合一”特征中的三线段前的定语的重要性,可让学生实际画图验证。

(五)、启发诱导,初步运用:

例2:如图,在△ABC中,AB=AC,D是BC边上的中点,

∠B=30°,求∠1和∠ADC的度数。

课堂练习:

(1)P85练习3

(2)例3已知:如图,房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC、屋椽AB=AC.求顶架上∠B、∠C、∠BAD、∠CAD的度数。

(这是一道几何计算题,要使学生加深对本课内容的应用,引导学生写出解题过程)

(六)、归纳小结,强化思想:

(1)叙述等腰三角形的特征及其应用;

(2)利用等腰三角形的特征可证明:两角相等,两线段相等,两直线互相垂直。

(3) 联想方法要经常运用,对今后解题大有裨益。

(七)、布置作业 ,引导预习:

P86 习题9.3   1、3、4   预习课本:P85 等腰三角形

课后思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

9.3章等腰三角形教案

(一)、温故知新,激发情趣:

1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?

2、指出等腰三角形的腰、底边、顶角、底角。

(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。)

(二) 、构设悬念,创设情境:

3、一般三角形有哪些特征? (三条边、三个内角、高、中线、角平分线)

4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?

(把问题3作为教学的出发点,激发学生的学习兴趣。问题4给学生留下悬念。)

(三)、目标导向,自然引入:

本节课我们一起研究——9.3 等腰三角形

(板书课题) 9.3 等腰三角形(了解本节课的学习内容)

(四)、设问质疑,探究尝试:

结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。

[问题]通过观察,你发现了什么结论?

(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)

[结论]等腰三角形的两个底角相等。

(板书学生发现的结论)

等腰三角形特征1:等腰三角形的两个底角相等

在△ ABC中,∵AB=AC( )

∴∠B=∠C( )

[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。

例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数。

〔学生思考,教师分析,板书〕

练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)

〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)

[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?

(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)

[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?

[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。

[结论]等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。简称为:“三线合一”。

等腰三角形特征2:

等腰三角形的顶角平分线、底边上的中线和高线互相重合(三线合一)

(出示小黑板)

[填空]根据等腰三角形特征的推论,在△ABC中

(1)∵AB=AC,AD⊥BC,

∴∠_=∠_,_=_;

(2)∵AB=AC,AD是中线,

∴∠_=∠_,_⊥_;

(3)∵AB=AC,AD是角平分线,

∴_⊥_,_=_

通过直观模具演示,引出推论2,并出示小黑板[填空]、强调“三线合一”的运用方法。使学生留下深刻印象,并通过[填空]了解三线合一的运用方法。

强调“三线合一”特征中的三线段前的定语的重要性,可让学生实际画图验证。

(五)、启发诱导,初步运用:

例2:如图,在△ABC中,AB=AC,D是BC边上的中点,

∠B=30°,求∠1和∠ADC的度数。

课堂练习:

(1)P85练习3

(2)例3已知:如图,房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC、屋椽AB=AC.求顶架上∠B、∠C、∠BAD、∠CAD的度数。

(这是一道几何计算题,要使学生加深对本课内容的应用,引导学生写出解题过程)

(六)、归纳小结,强化思想:

(1)叙述等腰三角形的特征及其应用;

(2)利用等腰三角形的特征可证明:两角相等,两线段相等,两直线互相垂直。

(3) 联想方法要经常运用,对今后解题大有裨益。

(七)、布置作业 ,引导预习:

P86 习题9.3   1、3、4   预习课本:P85 等腰三角形

课后思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

一键复制全文保存为WORD
相关文章