《平方差公式》评课稿(四篇)

《平方差公式》评课稿(精选4篇)

《平方差公式》评课稿 篇1

本周X上午我听了X老师一节关于《运用平方差公式进行因式分解》的公开课,X老师以自己扎实的数学基本功,细致严谨的数学解题思路,灵活轻松的师生互动,为我们献上了一节优质的数学课。

一 、严谨细致的概念复习

X老师针对本章内容所要用上了前面的知识做了细致的复习。实现了本章节知识点的联系与复习回顾,对接下去的学习做了很好的铺垫。

二 、全面深入的教学,注重知识的联系

X老师通过求长方形的面积来引导学生探索、总结出运用平方差公式进行因式分解的法则,利用数形结合,让学生对这个法则的理解更深入,同时突破了难点,体现了以教师为主导、学生自主探究、讨论、合作交流的新课改理念。

三 、注重总结知识

X老师通过练习,让学生观察步骤,并做出总结。使学生加深了对知识的理解,学会观察,发现,总结知识。最后X老师还给学生编了个解题的顺口溜,既方便让学生记忆,又能巩固知识。

四 、从我自身的观点来说说本节课的几点不足之处:

(1)整节课老师讲得多,学生个别回答较少。

(2)学生的讨论与合作学习还需加强,讨论问题还不够深入,应让学生从合作学习中有所提高,从与它人的交流中碰撞出思维的火花。

(3)还需加强的对知识点的认识,比如为什么要学升降幂,是为了结果的有序,数学的结果需要简洁有序。这样让学生很清楚,有目的的学习效果总是比较好的。

《平方差公式》评课稿 篇2

王老师上的《用平方差公式分解因式》是一堂新授课。这堂课在教学内容的设计、教学方法的运用、教学目标的达成、教师基本功的体现等方面都给我们留下了较好的印象。

这堂课的教学设计符合七年级学生的认知水平,从复习已经学过的因式分解入手,再提出如何将多项式a2-4因式分解,使较多学生产生疑问,激发学生的求知欲。然后王老师从引导学生回顾因式分解与整式乘法的关系入手,回顾了已经学过的整式乘法公式。从平方差公式引出课题。王老师从平方差公式的特点,引导学生形如( )2-( )2的多项式,就可以用平方差公式进行因式分解。然后从简单的形式上的判断,到简单的举例,方法的小结,再到复杂的多项式的因式分解,整堂课从知识的呈现,到知识的运用,再到知识的灵活运用,呈现知识结构的螺旋式上升,由易到难。

王老师在教学方法上,多采用引导、提问、激疑、合作探究、小组讨论等方式,激发学生的求知欲望,理解知识的成因,从而使学生掌握用平方差公式分解因式。

这堂课教学目标明确,重点突出,难点得到了较好的突破。从课堂上学生对知识的认知、问题的回答、练习的解答、知识的归纳等环节,可以看出这堂课的知识目标、情感目标、能力目标都已经达成。

整堂课中,王老师教态自然,语音清晰,语言规范,板书清楚,显示出了王老师教学基本功扎实。

总之,王老师的这堂课是成功的一堂课。

《平方差公式》评课稿 篇3

王老师上课时通过学生自己的试算、观察、发现、总结、归纳,得出用平方差公式进行因式分解,这样得出平方差公式后,并且把乘法公式进行对比,通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练。王老师放手让学生探索,促进学生主动发展的教学方法贯穿于这节课的始终。

从学生的练习情况来看,许多同学都掌握了这节课的知识,整个课堂中,以学生练为主,王老师能敢于创新、敢于探索, 整节课的学习,教师始终是学生学习活动的组织者、指导者和合作者,而学生始终都是一个发现者、探索者,充分发挥他们的学习主体作用。这样大大提高了这节课的效率。

教师讲课语言简捷、清晰,有较强的`表达和应变能力,课堂教学基本功好。乘法公式的引入由两种形式的引入,又形象直观地理解了乘法公式的内在实质。做到以点拨为主的教学。对于公式的牲能严格要求学生理解,并能让学生自己举例符合公式形状的例子,课堂内的练习量、内容及安排上恰当好处,有基本运用公式,有变式运用公式,也有适当的加深应用,满足了不同层次的学生的学习。效果是比较显著的。

《平方差公式》评课稿 篇4

《平方差公式》这一节重点和难点就在于结构的不变性和字母的可变性。因此在教学设计思想是从让每一位学生理解和掌握公式结构的不变性和字母的可变性从而达到熟练运用的目的。只是在具体的教学手段和措施及侧重点上有所区别。虽然如此,王老师基本目标已经达到,也取得了初步成效,尤其是对易错点的侧重让学生记忆深刻效果更明显。

具体来说,成功之处我们都基本实现了教学目标,突出了教学重难点,教学过程环环相扣,题目设计逐层深入,及时反馈学习效果,精讲多练。基本实现了预想的效果。我认为该课成功之处主要体现在:

1、导入新颖,从小故事出发,激发学生兴趣,给学生留下悬念,同时对平方差公式有了初步的感性认识,从而揭示课题。然后再通过一系列的探索和练习以及公式的几何解释,使学生对新知识的理解由感性认识到理性认识的过渡。

2、选题合理、有针对性和层次性。在巩固练习中通过像(x+y)(x—y)这种简单的套公式题型逐渐转换到涉及带负号的变式像(—a–b)(—a+b),(—a—b)(b—a),(a+b)(b—a)这样的题型,通过各类变式和判断及找错的题型问题的暴露,及时处理。使得学生逐步加深对公式结构的理解和记忆。然后转回到课前给学生留下的疑问,最后实现创新,用简便方法计算像×1998。使得整个课堂容量大,充实。

3、注重学生的训练和问题的暴露。要达到学生掌握知识,最终发展能力的目的,学生的思维就必须经过反复多次,循序渐进的实际应用,通过几组层层递进的例题练习让学生逐步理解公式中字母的可变性。最后达到对公式的全面和深刻的理解和掌握,使公式的运用得到升华。

4、本节课的重点和难点就是在于结构的不变性和字母的可变性。我就侧重运用公式时的易错点。不仅在训练期间多次强调的方式提醒学生易错点,相同项在前,相反项在后,结果才能用相同相的平方减去相反项的平方,平方时底是单项式但系数不是1或底数是多项式时不要忘记打上括号,而且在最后的小结中给学生总结更是让学生影响深刻。

5、对于整个教学环节,主张由学生通过讨论总结和发现问题、找出规律,一节数学课核心内容只有一点点,老师怎样总结出核心,抽象出本节课的内容特点,并用简捷、清晰的语言,将核心内容通过通俗,易懂,易记的方式交给我们的学生,使他们形成一种解决问题的能力。

总之这是一节很成功的课。

一键复制全文保存为WORD
相关文章