卫星通信论文范文【通用10篇】

“闪耀的北斗”彰显的是“科技创新”的目标追求。北斗系统的成功源于无数科研人员干着“惊天动地事”,做着“隐姓埋名人”,用刻苦钻研挺起民族的脊梁。卫星导航系统,是一个国家重要的基础设施。为大家精心整理了卫星通信论文范文【通用10篇】,如果对您有一些参考与帮助,请分享给最好的朋友。

卫星通信论文 篇1

1卫星通信技术引进的必要性

我厂在2008年“5.12”特大地震发生后,微波站房屋损坏、电源中断,蓄电池损坏,铁塔倾斜;光缆全被打断,通信机房倒塌等所有通信系统全部损坏。六月初首先在映站建立一个卫星小站,在整个抗震救灾过程中,保障了通信畅通,使救灾工作得以顺利进行。但在使用过程中,该卫星通信系统有明显不足:①延时太大,无法及时进行相互交流,让人很难受;②经常无故“死机”,需重新启动语音网关才能恢复正常通信;③小到中雨就中断通信。虽然有这些缺点,但是在震后,泥石流频发,通信线路经常被打断,或是道路被冲毁(故地埋通信光缆也不现实),危险性太大根本无法架设线路,卫星通信的优势就非常明显地体现出来。在恢复重建中,这是一种不可或缺的重要通信手段,我们把缺点尽量进行完善,来满足人们的通信需求。比如延时大的问题,就可由双跳改为单跳,延时就会明显改善,让人能够接受。还有将天线尺寸加大,只要不是暴雨,通信还是能保障畅通。总之卫星通信对震后恢复重建中的我厂来说,还是一种重要的通信方式,对及时了解灾情,指挥救灾能起到关键作用。

2卫星通信在我厂的应用

2010年5月将映站的卫星小站由原来的双跳改为单跳,卫星信息传播路径减少一半,延时明显改善,在通话中人们能够接受这样的效果。8月在我厂耿站生活区新建了一个卫星通信小站,卫星天线直径由原来的1.2m变成了1.8m,天线增益变大,抗雨衰能力加强。我厂的卫星通信系统网络如图3所示。我厂建设的卫星小站是Linkstar小站,工作在Ku波段,通过亚太V号通信卫星与位于北京的关口站进行连接,通过地面光纤网络,联入四川本地的基础运营商,解决本地通话。耿站卫星小站建成没几天,就发生“8.13”特大泥石流,耿站成为孤岛,唯有卫星通信畅通,该系统在此次灾害中发挥了关键作用,使省公司和总厂领导及时了解灾情,并指挥耿站恢复重建的人员安全撤离,避免了人身伤亡事故。为此,我厂通信专业受到四川省电力公司领导的公开表扬。在这之后,我厂陆续在耿闸、渔闸、映闸和渔站建起了卫星小站。在建站过程中我们吸取了“8.13”泥石流灾害发生时映站的卫星小站未能起到作用,原因是卫星小站的电源和厂房共用一套电源系统,未给小站单独配蓄电池,所以厂房被淹,电源也就中断。没有电源卫星小站不能工作,也就没有发挥作用。在以后建站中,都单独配有蓄电池,使其在灾害发生时能起到作用。各小站建成后,先后经历2011年的“7.03”泥石流及2013年的“7.09”洪灾,在光纤通信中断时确保我厂耿站安全发电,同时也取得不错的经济效益。由于我厂卫星小站工作在Ku波段,加之卫星在同步轨道工作(欧星、海事卫星也工作在同步轨道),下暴雨、大雪都会中断通信,如果用C波段能解决此问题,但C波段的卫星天线比较大,安装不方便。铱星属于低轨通信卫星,但人站在暴雨中手持铱星终端打电话同样不现实,且易遭雷击。这些问题随着通信技术的发展,相信不久后会得到圆满解决。总之,卫星通信系统的建立,为我厂恢复重建和安全生产起到了重要保障作用。卫星通信技术具有很好地发展前景,应用也日益广泛。

卫星通信论文 篇2

一、Ibetor公司X波段终端

2014年2月28日,西班牙Ibetor公司在华盛顿哥伦比亚特区2014卫星展上推出了新型的X波段Ib-Stom100X终端,其特点就是低矮不易探测。由于该终端高度只有20cm,该天线系统实现空气动力的高效能和自由调整(discretion),同时还能在极端地形情况下高效可靠连通。Ib-Stom100X专为舰船、飞机和地面车辆设计,加入了Ibetor公司设计的天线控制单元(ACU),包括惯性单元(IMU)、同千赫兹双GPS接收器、三轴陀螺仪、加速计和磁力计。通过这种组合,该系统号称指向精度提高0.3!,能在移动车辆上获取卫星信号并能“瞬时”再次找回。能做到这一点,部分原因是由于该系统使用的软件程序始终让机械扫描天线指向卫星位置,即使信号受到遮挡仍旧如此。其关键参数为瞬间频率500MHz、G/T比7.5dB/K以及波束中心上行速率高达8Mb/s。依据不同配置,其重量从75~85kg不等。根据Ibetor公司的信息,该系统已在西班牙军队服役。Indra公司西班牙的Indra公司提供了备选方案,它的Sotm解决方案运行在X和Ku波段上,使用低矮天线,并集成惯性导航。通过IP电台和骨干能力,该系统的卫星通信可为旅、营一级的巡逻部队提供服务。该系统经过专门设计,可用于任何车辆,甚至可用于小型船只。另外,其可选方案还包括Ku波段扩展频率(13.75~14.5GHz)、加密、运行时间20min的不间断电源,还可载有发电机,能够提供10h电力供应。吉拉特卫星网络公司就在Ibetor公司推出低矮天线终端之后,以色列吉拉特卫星网络公司(Gilat)也紧随其后,于2014年3月11日推出了“低矮光线卫星隐形光线(RaySatStealthRay)300X-M”。该系统经过专门设计,可与任何X波段卫星配套使用,可用于全球宽带卫星通信系统(WGS)以及崎岖道路行驶的车辆。它集成了多种动作传感器,可以进行准确跟踪、在最短时间获取信号以及能够“瞬间”再次找回信号。该系统经过设计,可以轻易装到未经改装的车辆上。它包含一个外置天线,长55.6cm、宽49cm、高25cm、重15kg。另外,它还有内置天线控制单元(ACU),重4.5kg。但是,由于它可以和集成MLT-1000调制解调器一起使用,故不必安装天线控制单元。吉拉特公司新产品的G/T比为2dB/K,传输和接收增益分别是23和25dBi,其接收频率为7.25~7.75GHz,传输频率为7.9!8.4GHz。SR300系列还包括用于Ku波段和Ka波段的低矮天线。

二、DRS技术公司X46-V认证

2013年5月,随着DRS技术公司的X46-V终端获得认证,允许用于美国国防部高性能卫星网络,该公司已能提供X-波段,为更多的偏远、分散的军事单位提供接入全球信息网络(GIG)。该认证由美国国防部联合卫星通信工程中心和美国陆军战略司令部颁发,从而允许X46-V用户接入全球宽带卫星通信系统(WGS),其语音、数据和视频传输速率高达6Mb/s。除了美国部队,澳大利亚、加大那、丹麦、卢森堡、荷兰以及新西兰军队都可以使用该系统卫星。另外,由于可以运行K-y以及Ka波段,该系统能为其它商业和军事卫星提供更大灵活性和冗余能力。该公司还于2013年8月27日宣布,其L-3Linkabit可以提供系列移动卫星通信终端,刚刚升级了Alsat永久移动地球站许可证,可以在美国境内以及其它商业航空器上使用其Ku波段终端。该证书允许的终端包括L-3DatronFSS-4180-LP(0.33×0.46m)、FSS-4180-LC小型孔径天线(圆周长0.46m),还包括LinkabitMPM-1000网络中心IP卫星通信调制解调器。美国陆军的“战术级作战人员信息网”(WIN-T)以及美国海军陆战队的“移动网络”中都采用了L-3终端。

三、全球移动网络主动布局系统

Elexis公司宣布,在成功将全球移动网络主动布局系统(Gnomad)集成到“斯特赖克”装甲车辆之后,公司又将这一经受战斗考验的系统扩展到另一美军的重要平台,并在美国乔治亚州本宁堡的美国陆军第7远征作战试验部队完成安装。全球移动网络主动布局系统易于安装,并且不需要对现有车辆进行改造。该系统包括卫星天线、RF组件以及几代模块底盘,使其可以安装在美国军用产品目录内以及商业用等车辆上,比如“悍马”等。该低矮型天线尺寸为45×35×7in(合114.3×88.9×17.78cm),重量不到25kg,可用于商业和军事卫星。由于采用开放式架构,该系统可以和许多视线内电台以及卫星调制解调器共用,并通过解调器实现全双向语音、数据和视频通信。通过和超高频或甚高频电台配合,比如和“单信道地面及机载无线电系统”(Sincgars)以及嵌入式GPS共用,该系统能够在运行图像中直接嵌入跟踪蓝军数据。该系统传送频率为14.0~14.5GHz、接收频率为17.7GHz或11.7~12.75GHz,速率分别高达512kb/s和2Mb/s。在30°仰角、23℃情况下,G/T值最低为8dB/k。罗克韦尔•柯林斯公司罗克韦尔•柯林斯瑞典通信技术公司的终端和萨博公司的四轴稳定平台结合,从而产生了一种新型的移动卫星通信终端,既可适用崎岖路面也可用于海上。它可以安装到轻型越野车辆和小型船只上,也可以安装在指挥所车辆和中型滨海船只上。这些应用由于速度快、颠簸剧烈、移动幅度大,建立和保持卫星连接非常困难。但是,该系统可以轻易解决这些问题,在高海况下时速高达50节以及崎岖地形下速度超过40km/h,它都能在1s内自动恢复丢失的连接,同时宽带通信速率可达10Mb/s。该系统全重约140kg,在20°仰角、11.0GHz情况下,G/T值为19dB/K。

四、泰利斯公司

2010年法国陆军首次在阿富汗战场部署移动卫星通信系统,而在马里,法国陆军也采用了泰利斯公司开发的设备,将其集成到VAB轮式装甲车上。由于配备了X、Ku和Ka波段,该系统能够为部署在偏远、敌对地区的部队提供连续不间断的语音、数据和视频服务。这些卫星通信系统为战斗网络无线电系统提供远距离通信连通,主要用于法国“维纳斯”计划的甚高频PR4G网络,尽管它也可方便地集成到甚高频/超高频的系统中。泰利斯公司是最早应用相控阵技术公司之一,而作为主动雷达天线,它具备优越的越野跟踪能力,集成了现代波形、抗干扰、抗简易***的发射机,甚至还有防弹天线罩。长期以来移动卫星通信系统不断革新,毫无疑问,将来还会有更多的新技术应用到该系统中。

卫星通信论文 篇3

论文摘要:低轨道(LEO)卫星移动通信系统是卫星距离地面500~1500km,运行周期2~4小时的卫星通信系统。铱系统、全球星系统及系统是地轨道卫星移动通信系统发展最快的范例。LEO卫星移动通信系统具有广阔的发展前景

1LEO卫星移动通信系统的特点

低轨(LEO)卫星移动通信系统与中轨(MEO)和静止轨道(GEO)卫星移动通信系统比较,具有以下特点:

1.1由于具有更小的信号衰减和更低的传播时延,低轨卫星通信系统更有利于实现个人全球通信。LEO系统的路径传输损耗通常比GEO低几十分贝,所需发射功率是GEO的1/200-1/2000,传播时延仅为GEO的1/7~1/50,这对于实现终端手持化和达到话音通信所需要的延时要求是十分有利的。

1.2蜂窝通信、多址、点波束、频率复用等技术的发展为LEO卫星移动通信提供了技术保障。

1.3由于地面移动终端对卫星的仰角较大,天线波束不易受到地面反射的影响,可避免多径衰落。

1.4它在若干个轨道平面上布置多个卫星,由星间通信链路将多个轨道平面上的卫星联接起来。整个星座如同结构上连成一体的大型平台,在地球表面形成蜂窝状服务小区,服务区用户至少被一个卫星覆盖,用户可随时接入系统。

1.5由于卫星的高速运动和卫星数目多,也带来了多普勒频移严重和星间切换控制复杂等问题。但不管怎样,低轨卫星移动通信系统的上述特点对于支持实现个人通信是有巨大吸引力的。

2LEO卫星通信系统用户切换的一般过程

低轨卫星移动通信系统中,由于卫星的高速运动,使得它的波束覆盖区也跟着移动,而波束覆盖区的移动速度远大于用户的运动速度,因此,在LEO卫星移动通信系统中,切换主要是由于卫星波束移动引起的。

对于卫星移动通信系统中的呼叫切换,通常经历这样一个过程:

2.1用户周期测量当前使用波束和邻近波束的导频信号或广播信道的信号强度的变化,以便确定它是否正在穿越相邻波束之间的边界或者处于相邻波束的重叠区内。

2.2若用户进入相邻波束的重叠区,达到切换触发的条件,将开始启动切换过程。用户中止利用当前波束进行通信,等待分配信道利用新波束进行通信。

2.3切换过程开始后,需要在新到达波束中为该用户按照一定的信道分配算法进行信道分配,并在原先波束中释放使用的信道;如果采用了波束内切换或信道重安排,则原先波束还须按照呼叫结束后的信道重安排算法进行波束内的信道优化分配,进行必要的波束内分配。分配完成后,将数据流从旧链路转移到新链路上来,完成切换。

3LEO卫星通信系统用户切换的种类

低轨卫星通信系统用户切换可分为以下类型:

3.1同一信关站和卫星的不同波束之间的切换

目标波束和现用波束在同一信关站和同一卫星内,该切换涉及两个波束的信道分配和修改同一信关站(不采用星上交换)或卫星(采用星上交换)的交换路由表。

3.2同一信关站不同卫星之间的切换

目标波束与现用波束不在同一颗卫星内、但在同一个信关站范围内,它涉及两颗卫星的信道分配;对于采用星上交换的体制,需要改变两颗卫星星上交换路由表;对于卫星透明转发的体制,需要修改信关站交换路由表。

3.3不同信关站同一卫星的波束间的切换

目标波束和现用波束属于同一颗卫星,但属于不同的信关站,它涉及两个信关站之间的切换,包括信道分配、改变地面线路连接、位置更新、记费等,对于采用星上交换的卫星还需要改变其交换路由表。

3.4不同信关站不同卫星之间的切换

目标波束和先用波束属于不同的卫星且属于不同的信关站,它涉及两个信关站和两颗卫星之间的切换,信关站涉及信道分配、改变地面线路连接、位置更新、记费等问题,对于采用星上交换的卫星需要改变其交换路由表。

4LEO卫星通信系统中用户切换目标卫星的选择准则

在低轨卫星移动通信系统的切换控制中,切换的目标卫星的选择策略对切换的最终性能也有着直接的影响。因此,根据系统的需要,设计出适合于本系统的切换目标卫星选择方案至关重要。目前,低轨卫星移动通信系统中的切换目标卫星选择策略主要有以下几种:最近卫星准则、最强信号准则、最长可视时间准则、最多可用信道数准则、覆盖时间与仰角加权准则及最小跳数切换准则。

其中,最近卫星准则认为距离用户终端最近(仰角最大)的卫星能够提供很好的服务质量(QoS),可从纯几何上对其性能进行分析,也称为最大仰角准则。采用该准则时,用户终端在任何时候都选择能够为其提供最大仰角的卫星。该准则实现简单,但一般不会在实际系统中采用,因为它既没有考虑无线信号在空中的传播条件,也没有考虑网络的运行状况。强信号准则是终端在任何时候选择能够接收到最强信号的卫星。拥有足够高的信号强度是无线通信的一个基本条件,可以认为最强信号卫星准则能够提供较好的服务质量。

最长可视时间准则又称为最大覆盖时间准则。按照这个策略,用户将利用星座系统运行的先验知识,始终选择具有最大服务时间的卫星作为其切换的目标卫星。该准则基于对最小化系统的切换请求到达率考虑,延长了切换后呼叫一直被某个卫星服务的时间,从而可获得较低的被迫中断概率。

最多可用信道数准则为:用户选择具有最多可用信道数的卫星为它提供服务。该准则出于对整个系统信道资源利用率考虑,以使卫星系统中每个卫星所承载的业务量趋于均匀分布,避免因某个卫星节点超负荷而失效,从而影响到整个系统性能。应用这个准则时,不管卫星的具体位置,新呼叫和切换呼叫会经历相同的阻塞率或被迫中断概率,从而可以避免出现某个卫星超载的情况。

最小跳数切换准则则应用于具有星上路由的情况,策略要求用户在任何时候都选择能够为其提供最少跳数路径的卫星。在具体实现过程中,通信双方周期性检测其可见卫星中是否有比当前通信路径的跳数更少的路径,如果存在则进行切换,否则继续使用当前卫星进行通信。当然,如果通信双方的当前卫星出现低于最小仰角(或信噪比)时,也需要进行切换。假定卫星系统使用准静态路由算法,路由表项中带有卫星到卫星的路由跳数,而且其路由信息随着网络拓扑变化由系统自动刷新。

5低轨卫星通信系统用户切换与路由

在切换时,由于服务卫星的改变,对于采用星上交换和星上路由的卫星通信系统,原有路由也需要被重新建立。重建路由有以下几种方案:全路由重建,部分路由重建,重路由结合扩展路由,动态概率优化路由,最小跳数路由。

其中全路由重建卫星切换方案:原有路由完全被新路由代替,该方案得到的新路由仍然是最优化路径,但其处理时延比较大。

部分路由重建卫星切换方案:当切换发生时,原有路由被部分保存,只有变化部分被更新,该方案处理时延比较小,但新生成的路由可能不是最优化路径。

重路由与扩展路由结合:切换后首先进行路由扩展,再进行路由优化。以降低延时,但信令开销增大。

动态概率优化路由:全路由重建节约带宽,但是扩大了信令资源,需要选择合适的优化概率P,在带宽和信令资源之间折中。即并不对所有扩展后的路由进行优化,而是以概率P,对一部分路由进行优化,一部分仍保持原扩展路由。

最小跳数路由策略:用户在任何时候都选择能够为其提供最少跳数路径的卫星。通信双方周期性检测其可见卫星中是否有比当前通信路径的跳数更少的路径,如果存在则进行切换,否则继续使用当前卫星进行通信。该策略能够获得较低的传播延时和较小的切换频率,具有很好的系统性能。

参考文献

[1]陈振国,杨鸿文,郭文彬。卫星通信系统与技术。北京:北京邮电大学出版社,2003

[2]刘刚。低轨卫星星座网的切换研究。通信学报,2004(25)

卫星通信论文 篇4

论文摘要:随着油田的开发,偏远油区的数据监控、视频监控在油田的安全生产、管理中发挥着重要作用,而无线通讯技术的应用已逐渐成为各种监控系统的主要链路方式。本文对目前广泛应用的几种无线通讯技术的进行简单介绍,分析偏远油区的地理环境及生产环境对无线通讯技术应用的影响。并对应用无线网桥技术进行的平台视频监控项目中的成功应用做简单介绍。

1引言

在油田偏远油区生产过程中,对相关生产参数及油井视频进行远程监控对偏远油井的安全生产起着至关重要的作用。但由于偏远油区装置远离油田总部,应用有线的通讯方式,施工困难且周期长、灵活性差。而无线通讯方式由于其建立物理链路简单易行,成本低,可以根据现场需求及时调整项目方案,灵活性好,系统的功能扩展方便,因此特别适合偏远油区对通信链路的要求。

2常用的无线通讯技术

目前在油田现场广泛应用的无线通讯技术主要有GPRS/CDMA、数传电台、扩频微波、无线网桥及卫星通信、短波通信技术等。

其中GPRS和CDMA技术中国移动和中国联通公司的主营数据传输业务,在数据传输方面有着很强的优势,即信号覆盖范围广。对于陆上油田生产区域基本完全覆盖。但由于海上油田地理位置特殊,远离陆地的基站,因此很多海上生产平台还无法为GPRS/CDMA信号完全覆盖。此外经过测试,GPRS的平均速率为20kbit/s~40kbit/s,CDMA的平均速率为80kbit/s~100kbit/s,可以满足传输小数据量的生产数据要求,但无法满足大数据量的信号(例如视频信号)远程无线传输。虽然有利用CDMA技术进行视频信号传输的案例,但效果并不理想。

数字电台用于点对点或点对多点的工作环境,能够提供标准RS-232接口,可直接与计算机、RTU、PLC等数据终端连接,实现透明传输。数传电台的传输速率从1200~19.2Kbit,传输距离20~50公里。具有抗干扰能力强、接收灵敏度高等特点。数传电台技术比较成熟,标准统一,一直以来广泛用于油田的数据遥测/数据采集与监控(SCADA)项目中。但随着GPRS/CDMA技术的日渐成熟,相应的设备价格的降低,使得在很多应用场合中数传电台被GPRS/CDMA所取代。但同时,数传电台的相关技术也在不断发展,智能化、网络化、高带宽的数传电台也不断涌现。结合数传电台误码率低、信道可靠的特点,数传电台必将成为海上油田通信技术应用的可靠选择。

扩频微波和无线网桥技术是近几年兴起的一门数据传输技术。扩频微波最大优点在于较强的抗干扰能力,以及保密、多址、组网、抗多径等,同时具有传输距离远、覆盖面广等特点,特别适合野外联网应用。而无线网桥是无线射频技术和传统的有线网桥技术相结合的产物。无线网桥是为使用无线(微波)进行远距离数据传输的点对点网间互联而设计。它是一种在链路层实现LAN互联的存储转发设备,可用于固定数字设备与其他固定数字设备之间的远距离(可达50km)、高速(可达百Mbps)无线组网。这两项技术都可以用来传输对带宽要求相当高的视频监控等大数据量信号传输业务。

例如,对于远离陆地且无法进行中继的海上平台,通讯链路只能通过卫星通信和短波通讯。其中卫星通信范围大,只要卫星发射的波束覆盖进行的范围均可进行通信。不易受陆地灾害影响,建设速度快,易于实现广播和多址通信等等优点。但其运行费用相对昂贵,且系统维护要求高。短波通讯以往只在军事通信、专业通信、业余通信中发挥着极为重要的作用,因其传输速率低、噪声大,电离层反射天波为主,通常不能稳定的使用固定频率工作等缺点,因此在其他领域已慢慢淡出人们的视线。尽管短波通信存在一些缺陷,但对于海上油田而言,短波通讯作为可靠性高、覆盖区域广的通信方式,用于海上平台的紧急通信及小数据量传输应该是一个比较好的选择。

3环境因素对技术应用的影响

偏远油区的环境因素以以海上油田最为特殊。海上油田除了考虑信道带宽,传输数率,传输距离,发射功率,天线要求等通信设备本身的技术参数外,在应用无线通讯技术的过程中,还必须全面地考虑海上平台独特的地理环境与地理条件对无线通信技术应用的影响。

3.1对信号传输的影响

可以通过选取性能好的设备或应用抗干扰措施以减少甚至避免干扰。但无线通信过程中的信号衰落问题则是普遍存在的,而且是不可避免的。由于海上油田远离陆地,与陆地之间的广阔的海域、多变的气候使得在陆上应用效果很好的技术在海上应用时没有了用武之地。

微波在空间传播中将受到大气效应和地面效应的影响,导致接受机接受的电平随着时间的变化而不断起伏变化,我们把这种现象称为衰落。从衰落的物理因素来看,可以分成以下几类:吸收衰落、雨雾衰落、K型衰落、波导型衰落、闪烁衰落等等。在各种衰落因素中,吸收衰落、雨雾衰落及K型衰落对海上油田的无线通信应用影响较大。

3.2对技术应用的影响

各项通信技术在海上油田应用中还存在的另外一个问题就是其独特的现场环境。海上平台一般空间狭小,还要考虑海上多风,平台最高点一般较低的特点。

首先是对天线安装的限制。海上微波通信受地形地貌影响,相同的通信距离要求两端天线的高度更高。对于卫星通信、扩频微波、短波通信等天线体积较大的应用,由于海上风力较大,抗风性的要求也使得设备在小平台的安装变得十分困难。

此外,对于无人值守的平台,设备必须具有高可靠性、可自动维护、参数远程设置等功能。而对于卫星通信、短波通信等要求平台上配备专业管理操作人员进行设备的管理维护,这一特点也为技术的应用带来一定的限制。

4无线网桥技术在海上平台视频监控中的应用

在实际的现场应用中,我们选取了基于5.8G无线网桥设备进行了现场应用测试。测试地点为浅海油井,测试内容为4路视频监控图像的传输。该系统具体解决方案是利用摩托罗拉Canopy5.8G无线网桥建立通信链路。在平台一侧首先通过视频服务器将模拟视频信号转化为可在网络传输的IP数据流,之后由无线网桥将信号传输到陆地端。陆地端一侧通过无线网桥进行接收后由视频监控服务器处理后,对视频信号进行录像存储及Web。相关用户可依据相应权限在局域网内进行视频图像的浏览、录像等操作。

系统通讯链路建立后,可远端对设备参数进行设置,设备维护方便。监控视频图像清晰、连贯,满足监控要求。从系统的链路冗余可以看出本次测试的应用距离已接近5.8G无线网桥技术在海上应用的最远距离。从系统的稳定性出发,在更远一些的类似应用中应谨慎选择这项技术。

结论

无线通信技术在偏远油区的应用已逐渐成为各种监控系统的主要链路方式。在选取相关技术时除了要考虑包括传输距离、信号带宽、天线安装条件、发射功率、设备功耗、系统成本等各方面因素外,同时还要充分考虑环境对通信的影响。信号的衰弱会使很多通信技术达不到理论标定的距离,因此无法适应现场需要。面对大量的数据传输管理的需求,在选择无线通信技术手段方面还应统筹计划。特别是要对采用技术的先进性、可靠性及系统的可扩展性等多方面进行综合考虑。

参考文献

[1]王一平、肖景明。微波传播。北京:人民邮电出版社,1997

[2]许东。网络化的全数字图像监控系统。北京:有线电视技术,2002:27-56

卫星通信论文 篇5

[论文摘要]随着现代科学技术的飞速发展,构建完善坚强可靠的电力通信网,显得越来越重要。文章结合电力通信的特点和需求及无线新技术的特性,分析无线通信技术在电网通信中的应用前景。

一、概述

电力通信网是为了保证电力系统的安全稳定运行应运而生的。它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。我国的电力通信网经过几十年风风雨雨的建设,已经初具规模,通过卫星、微波、载波、光缆等多种通信手段构建而成为立体交叉通信网。随着无线通信技术的发展,无线通信系统的特性发生巨大的变化。鉴于采用无线通信网不依赖于电网网架,且抗自然灾害能力较强,同时具有带宽大、传输距离远、非视距传输等优点,非常适合弥补目前通信方式的单一化、覆盖面不全的缺陷。本文简单介绍一下无线通信传输体制的应用特点和优缺点,并分析其在电力系统的应用前景。

二、无线技术介绍

(一)无线通信技术的概念

目前,无线通信及其应用已成为当今信息科学技术最活跃的研究领域之一。其一般由无线基站、无线终端及应用管理服务器等组成。

(二)无线通信技术的发展现状

无线通信技术按照传输距离大致可以分为以下四种技术,即基于IEEE802.15的无线个域网(WPAN)、基于IEEE802.11的无线局域网(WLAN)、基于IEEE802.16的无线城域网(WMAN)及基于IEEE802.20的无线广域网(WWAN)。

总的来说,长距离无线接入技术的代表为:GSM、GPRS、3G;短距离无线接入技术的代表则包括:WLAN、UWB等。按照移动性又可以分为移动接入和固定接入。其中固定无线接入技术主要有:3.5GHz无线接入(MMDS)、本地多点分配业务(LMDS)、802.16d;移动无线接入技术主要包括:基于802.15的WPAN、基于802.11的WLAN、基于802.16e的WiMAX、基于802.20的WWAN。按照带宽则又可分为窄带无线接入和宽带无线接入。其中宽带无线接入技术的代表有3G、LMDS、WiMAX;窄带无线接入技术的代表有第一代和第二代蜂窝移动通信系统。

1.主流无线通信技术

从技术发展的趋势可以看出,以OFDM+MIMO为核心的无线通信技术将成为未来无线通信发展的主流方向。而目前基于该技术的无线通信技术主要有:B3G、WiMAX、WiFi、WMN等4种技术。

2.其他无线通信技术

除了上述主流的无线通信技术外,目前已存在的无线通信技术还包括:IrDA、Bluetooth、RFID、UWB、集群通信等短距离通信技术及LMDS、MMDS、点对点微波、卫星通信等长距离通信技术。

(1)IrDA:InfraredDataAssociation,是点对点的数据传输协议,通信距离一般在0~1m之间,传输速率最快可达16Mbps,通信介质为波长900纳米左右的近红外线。

(2)Bluetooth:Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术,通信介质为2.402GHz到2.480GHz的电磁波。

(3)RFID:RadioFrequencyIdentification,即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。RFID由标签、解读器和天线三个基本要素组成。

(4)UWB:UltraWideband,即超宽带技术。UWB通信又被称为是无载波的基带通信,几乎是全数字通信系统,所需要的射频和微波器件很少,因此可以减小系统的复杂性,降低成本。

三、无线技术优劣分析

(一)WLAN技术分析

Wi-Fi的技术和产品已经相当成熟,而且大批量生产。该技术适用于无线局域网,作为有线网络的延伸,对于特殊地点宽带应用,尽管Wi-Fi技术应用非常广泛,但是它依然在安全性上存在一定的安全隐患,Wi-Fi采用的是射频(RF)技术,通过空气发送和接收数据。由于无线网络使用无线电波传输数据信号,所以非常容易受到来自外界的攻击,黑客可以比较轻易地在电波的覆盖范围内盗取数据甚至进入未受保护的公司内部局域网。

(二)WiMax技术分析

WiMax是一个先进的技术,推出相对较晚,存在频率复用性小、利用率低的问题,但由于最近才完成标准化,该技术的大规模推广还需要实践考验。从应用前景看,该技术可以在较大范围内满足上网要求,覆盖可以包括室外和室内,可以进行大面积的信号覆盖,甚至只要少数基站就可以实现全城覆盖。WiMax由于其技术的先进性和超远的传输距离,一直被业界看好,是未来移动技术的发展方向,并提供优良的最后一公里网络接入服务。

(三)WMN技术分析

WMN是正在研究中的技术,在研究中不断地在不同方面结合各种技术的特点进行融合,而且暂时没有一个成熟的产品系列来支持该技术的大规模应用。从应用前景看,WMN这一新兴网络不仅在无线宽带接入中有着广阔的应用空间,在其他方面如结合数据、图像采集模块可以对目标对象进行监控或数据采集,并广泛应用到环境检测、工业、交通等领域。随着其他技术的不断更新完善,WMN更好地与之相融合、互补,从而能够扬长避短,发挥出各自的优势。

(四)3G技术分析

3G于1996年提出标准,2000年完成包括上层协议在内的完整标准的制订工作。3G网络部署已具备相当的实践经验,有一成套建网的理论,包括对网络的链路预算、传播模型预算以及计算机仿真等。从商用前景看,目前,3G在部分地区已得到大规模的商业应用,比如欧洲很多国家、日本、韩国等都已经建设了3G的网络。3G技术已经进入可以实用的阶段,还有很多国家和地区正在建设或将要建设3G网络。

(五)LMDS技术分析

本地多点分布业务系统LMDS是一种提供点对多点通信的固定宽带无线接入技术,其工作频率在20GHZ以上,利用毫米波传输,可在一定的范围内提供数字双工语音、数据、因特网和视频业务,是一种非常好的宽带固定无线接入解决方案。在最优情况下,距离可达8公里;但是由于受降雨的原因,距离通常限于1.5公里。

其主要工作原理是通过扇区或基站设备将ATM骨干网基带信息调制为射频信号发射出去,在其覆盖区域内的许多用户端设备接收并将射频信号还原为ATM基带信号,在无需为每个用户专门铺设光纤或铜缆情况下,实现数据双向对称高带宽无线传输。

(六)MMDS技术分析

MMDS的主要缺点是有阻塞问题且信号质量易受天气变化的影响,可用频带亦不够宽,最多不超过200MHz。其次,MMDS对传输路径要求非常严格。由于MMDS采用的调制技术主要是相移键控PSK(包括BPSK、DQPSK、QPSK等)和正交幅度调制QAM调制技术,无法做到非视距传输,在目前复杂的城市环境下难以推广应用。另外,MMDS没有统一的国际标准,各厂家的设备存在兼容性问题。中国论文联盟-七)集群通信技术分析

数字集群系统具有很多优点,它的频谱利用率有很大提高,可进一步提高集群系统的用户容量;它提高了信号抗信道衰落的能力,使无线传输质量变好;由于使用了发展成熟的数字加密理论和实用技术,所以对数字系统来说,保密性也有很大改善。

数字集群移动通信系统可提供多业务服务,也就是说除数字语音信号外,还可以传输用户数字、图像信息等。由于网内传输的是统一的数字信号,因此极大地提高了集群网的服务功能。

(八)点对点微波通信技术分析

微波传输的优势主要体现在以下几个方面:第一,可以降低运营商的运营成本。与租用线路相比,微波系统的投资只要一年左右即可收回。第二,微波传输系统部署简洁快速。与传统的传输手段相比,其快速部署的优势可以更快地满足新业务发展的需要。第三,目前的微波产品对未来的发展是有保障的,对于运营商的新业务和新需求都可以给予很好的支撑。未来,微波传输系统将升级到全IP的平台之上,可以全面支持运营商未来的发展。

(九)卫星通信技术分析

利用卫星在有些人口不很密集的地区来配合陆地通信。在这些地区散布着范围较广但不密集的用户,可以利用卫星作为用户连至固定有线网的接入设施。在陆地通信网已经构成宽带多媒体通信网的环境下,利用卫星建成宽带卫星接入系统是比较好而切合实际的方案,经济又可靠。

但是卫星通信毕竟是采用卫星作为通信平台,其地面站的建设、通信信道租用费用都需要花费大量资金,而且通信资源为卫星通信公司所有,受其带宽的限制,使得大量数据的传输需要付出非常大的代价。因此,作为日常生产、生活使用是极为不经济的;而将卫星通信作为应急通信、作战通信、海外通信等则比较适合。

四、无线技术综合比较

目前无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围、不同的适用区域、不同的技术特点、不同的接入速率。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。

首先,从标准化程度上看,本报告所涉及的技术中,仅仅WMN技术没有成熟的标准体系,LMDS、MMDS、集群通信均有多种标准,只是没有统一的国际标准,其余的技术均已经完成标准化工作,并且都进行了试验网建设和商业网建设。

从频率上看,Wi-Fi技术、WMN均使用的是开放频段,WiMax技术、3G技术等其他技术使用的是授权频段。

从覆盖范围上看,Wi-Fi技术、WMN技术属于局域网无线接入技术,仅覆盖35m~100m;WiMax技术、3G技术、LMDS技术、MMDS技术、集群通信属于城域网接入技术,覆盖范围在1km~54km不等,而卫星通信、点对点微波则属于广域网技术,通常用于通信主干组网建设。

从传输速率上看,点对点微波和卫星通信属于干线传输技术,不同的情况速率变化较大,而其余的技术均为接入技术,仅仅是3G技术接入速率最小,仅为384k,而其余技术均为几十M甚至上百M的速率。

从调制技术上看,其中WiFi技术、WiMax技术、WMN、3G技术均采用最新的调制技术OFDM,其余的技术均未采用OFDM调制技术。

从天线技术上看,仅仅3G和WiMax技术采用了MIMO技术,而其他技术均未采用MIMO技术;从传输环境上看,仅仅WiMax技术和3G技术支持非视距传输,其余技术均要求视距传输环境;从网络安全和QoS机制上看,WiMax技术和3G技术在这方面做得比较优秀、完善,其余的均存在较大的问题。

卫星通信论文 篇6

姿态的表示有多种方法,如欧拉角法、方向余弦法、四元数法和罗德里格斯参数法等。四元数法只需要解四个微分方程,不涉及三角函数运算,计算量小,是姿态控制领域广泛应用的姿态描述参数。由于四元数用四维向量来表示三维姿态角,因此,四元数四个元素间不是相互独立的。此外,四元数必须满足单位化限制1Tqq,存在加权均值计算和协方差奇异问题,会给姿态估计造成影响。

2组合导航姿态估计模型的建立

为降低系统实现的复杂程度,采用位置和速度的松组合模式,这种模式有两个优点:(1)动中通姿态估计系统工程实现容易,组合导航算法的计算量小、实时性好;(2)GPS和INS两个系统保持独立工作,当其中某个系统出现故障时,系统可继续保持工作,有效地保证了算法的连续性。选取惯性导航系统的基本方程和四元数随时间的更新方程作为系统方程。系统的可观性是考察卡尔曼滤波器性能的重要方法,对于一个完全可观测的系统,状态估计的效果取决于系统噪声和测量噪声;然而对于状态不可观测的系统,即使噪声的影响很小甚至可以忽略时,仍然得不到状态的精确估计。由组合导航姿态估计的速度误差方程可知,横滚角和俯仰角可以通过位置和速度信息间接可观,而航向角的可观性取决于载体的机动特性。因此,组合导航姿态估计航向角可观性弱,姿态角估计精度低、易发散,仅使用组合导航算法无法获得精确的姿态角估计值。单基线GPS在路况较好的情况下可以提供精确的航向信息[10],因此,当单基线GPS有效时,可以利用单基线GPS航向角作为外部观测量,改善航向角的可观性,提高航向角的估计精度。

3算法实现

3.1开关自适应UKF组合姿态估计算法单基线GPS对空视环境提出了严格要求,当移动卫星地球站在行驶过程中GPS信号受到遮挡时,单基线无法输出精确的航向角。若单基线GPS中的一个GPS天线可以输出速率信息,此时,可以利用单天线GPS的航迹角进行辅助。在载体直线行驶时,单天线GPS测量得到的航迹角与载体的航向角一致,但是当载体转弯时,侧滑角会对航向角估计值产生干扰,使得航迹角与真实航向角之间产生偏差,此时,不可以使用单基线GPS的航迹角作为辅助手段。当检测到载体转弯时,可以通过陀螺积分短时间维持姿态角的有效输出。综上所述,根据GPS的使用特点和移动卫星地球站载体的行驶路况,设计自适应组合导航算法,判断规则。当单基线GPS收星数目大于,即能够提供航向信息时,算法通过单基线GPS航向角辅助进行姿态估计;当单基线GPS收星数目小于,即单基线GPS不能提供航向信息时,利用GPS航迹角辅助观测;当单基线输出信息全部无效时,利用陀螺的短时精度保持系统的有效输出,系统的原理如图2所示。

3.2参数切换UKF组合姿态估计算法扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)是姿态估计领域应用最为广泛、最为成熟的非线性滤波方法,但是其存在线性化误差,且当线性化假设不成立或初始误差较大时,滤波器性能会下降甚至发散。此外,EKF需要计算状态方程的雅可比矩阵,计算复杂、不易实现。无迹卡尔曼滤波(UnscensedKalmanFilter,UKF)是一个以最优高斯近似的卡尔曼滤波器架构为基础所发展的递归式最小均方根误差估计器,估计精度高,无需计算雅克比矩阵、计算量适中,满足动中通天线波束指向要求,因此选取UKF作为姿态估计算法。UKF滤波算法是基于UT变换的卡尔曼滤波算法,其基本思想是用一定数量的样本通过UT去近似系统的真实分布,由被估计量的先验均值和方差产生一批离散的与被估计量具有相同的概率统计的采样点,其经过非线性变换后,生成后验的均值和方差,基于参数切换的组合导航采用UKF算法步骤如下。

4实验分析

为验证算法的有效性,选取北京星网宇达科技开发公司的惯性测量单元XW-IMU5220和GPS定位定向模块XW-ADU3601作为实验平台,同时将高精度姿态方位组合导航系统XW-ADU7612作为验证算法的基准。XW-ADU3601由两个GPS接收机和以嵌入式处理器为核心的计算机组成,既可以独立使用也可以与其它的系统联合使用,其给出的速度精度小于0.02m/s。惯性测量单元XW-IMU5220产品选用低成本高可靠性的微机械惯性器件,由三个微机械陀螺和三个微机械加速度计组成,可实现对载体角运动、线运动的实时测量,以100Hz的数据更新速率稳定的输出加速度值和角速率值。选择乡村土石路进行实验,移动卫星通信载体的姿态的动态变化范围大,车辆行驶机动状况复杂,存在载体的强机动加减速、转弯等各种突发干扰因素,可以验证算法的有效性。实验载体及设备安装如图3所示。GPS收星数目如图4所示,GPS定位定向模块XW-ADU3601收星数目均在5颗以上。由实际跑车经验得知:XW-ADU3601收星数目大于6时,可以输出航向角;当收星数目大于4时,可以输出GPS航迹角;当收星数目小于4时,无法利用GPS的测量信息。因此,可以充分利用单基线GPS定位定向模块的输出数据,通过组合导航算法得到姿态角的估计值。直接使用基于扩展卡尔曼滤波的组合导航算法的实验结果如图5、图6和图7所示。

卫星通信论文 篇7

FDMA/DAMA卫星通信网动态为链路分配各种资源,为了高效利用资源和保证通信链路传输质量,资源分配时需考虑影响卫星通信链路性能的各种因素。影响卫星通信链路性能的主要因素有:天线尺寸、调制编码方式、卫星参数和雨衰等。

1.1天线尺寸天线是地球站的重要组成部分,天线尺寸(口径)直接关系到地球站的发射和接收能力,影响通信链路的调制、编译码选择,关系到链路对地球站功放、卫星转发器功率的需求,是影响资源分配策略的重要因素。对上行链路,天线口径越大地球站发射增益越大,发射同样的EIRP需要的功放功率就小。对下行链路,地球站天线决定了地球站的G/T值。天线口径大,地球站G/T值就高,接收性能越好,转发器利用率高。卫星资源分配中,天线尺寸影响地球站功放功率分配和转发器带宽功率分配,应根据收、发站天线口径对链路性能进行计算分析,按策略调整调制编码方式,优化分配地球站和卫星转发器功率资源,保证可靠通信同时功率、带宽占用相对平衡。

1.2调制编码方式调制、编码方式是卫星通信链路的重要特征参数,影响信号效率以及带宽、功率资源分配。一方面,调制、编码方式与业务信息速率IR决定带宽分配量;另一方面,对确定的误码率性能有最低的链路载噪比C/N门限值要求,进而影响链路对转发器功率资源的分配需求。卫星链路质量要求一定时,如误比特率Pb=10-7,不同调制、编码方式要求的门限C/N不同。同样的调制编码方式下,由于硬件技术水平不同,不同型号调制解调设备要求的门限C/N也不同。链路门限C/N越高,需要发站较多的发射能力和收站更好的接收能力,消耗卫星转发器更多的功率资源。为了分配使用带宽、功率,在具体的资源分配策略下,通过比较选择不同的调制、编码方式组合,优化分配资源,保证通信可靠的同时,功率、带宽占用相对平衡。

1.3卫星参数卫星参数包括频率带宽参数和功率参数,都属于空间段资源。带宽参数即转发器带宽;功率参数主要包括3个:饱和EIRP、G/T和饱和通量密度SFD。卫星在地面不同地点的EIRP、G/T值不同,分别通过EIRP覆盖图和G/T覆盖图表示该卫星的EIRP和G/T覆盖特性。由于卫星上一般都有C波段和Ku波段转发器,所以一颗卫星信号的EIRP覆盖图就分别有C波段覆盖图和Ku波段覆盖图[4]。为卫星通信链路分配资源时,需要使用以上卫星参数,通过链路计算来计算分配卫星功率资源,以及发送地球站的功放功率资源,准确选择地球站对应的卫星参数十分重要,尤其对于地球站的移动站型,每次进行业务链路资源分配计算时,需要使用移动站当时所在地点的响应卫星参数(EIRP、G/T)进行资源动态分配计算。为支持资源分配策略,需要建立每个卫星的EIRP和G/T覆盖特性数据库。另外,卫星的干扰噪声也影响链路计算的准确性,具体每个卫星的干扰噪声系数需向卫星服务商查询。

1.4雨衰在10GHz以上频段(Ku和Ka以上频段),降雨的衰减是卫星链路衰减的主要因素[2]。降雨造成的影响主要体现在对电波信号的衰落、对地面站天线系统G/T值的减小以及由此带来链路载噪比的变化,随着电波频率的提高,其影响也就愈加显著[5]。降雨对上行链路和下行链路均会产生影响。对上行链路,降雨时若要保持(C/T)u不变,则只有改变地球站发射载波的有效全向辐射功率EIRPe,只有增加发射机的发射功率。对下行链路,降雨时若要保持(C/T)d不变,则只有改变卫星发射载波的有效全向辐射功率EIRPs,即增加卫星功放的发射功率。文献[8-10]对雨衰进行了详细分析。一般通过2种措施应对降雨对链路的影响。一种措施是在初期为链路分配资源时,计算雨衰值,并在链路计算中考虑雨衰余量,通过增加发站、转发器的功率来预先防范雨衰的影响;另一种措施是通信过程中,通过功率控制机制在降雨时增加地球站发射机功率。功率控制机制不在本文研究范围,雨衰的大小决定于该地面站雨速率的统计分布、仰角和工作频率,具体雨衰计算参考文献[5,6]。资源动态分配中,通过计算发、收地球站雨衰,增加链路计算雨衰余量,在初期分配资源时分配一定富裕的功率资源,以提高链路通信过程中发生降雨时的可用性。

2资源分配策略设计及软件设计

2.1优化目标FDMA/DAMA卫星通信网资源动态分配策略,是从资源分配角度优化网络管理,保证卫星通信网的优化运行,主要需达到以下目标:①满足链路可用性:如满足链路误码率指标、系统可用度指标等;②高效使用资源:包括资源的动态复用、提高带宽效率等。资源动态分配策略首先要保证分配结果能够保证链路性能,是可用的,同时保证资源高效使用。

2.2分配策略分配策略是为达到资源优化分配使用的目标,综合各种因素进行计算、权衡和优化决策的过程。为了满足可用性,在动态分配资源时,应以目标链路误码率对应的门限Eb/N0进行链路计算,对Ku以上频段考虑系统可用度对应的雨衰余量,并且在链路时间上避开地球站日凌、星蚀发生时段。为了提高资源利用率,满足业务通信前提下,尽可能采用动态分配资源机制;空间段卫星资源一般基于功带平衡原则分配;带宽资源充足,功率紧张(包括转发器功率和地球站功放功率)时,优选合理调制编码方式,保证传输可靠性;带宽资源紧张功率资源充足时,优选高效调制编码方式,保证分配可满足。在进行资源分配计算时,对小天线发大天线收情况,接收能力强,一般按照功带平衡原则即可;对小天线发小天线收情况,发送接收能力均弱,情况允许时考虑多占带宽节省功率的调制编码方式;对大天线况,地球站功放功率资源充足时,可以考虑采用高效调制编码方式提高带宽使用效率。当业务链路速率要求具有一定范围时,如果卫星带宽资源充足,可按照较大的速率为其分配卫星资源;如果卫星带宽资源紧张,则可以按最小速率为其分配卫星资源,以满足其最低业务需求。

2.3资源分配流程FDMA/DAMA卫星通信网资源分配流程如图2所示。根据到来的业务请求,首先确定业务的收、发站及速率需求范围,然后根据地球站参数、卫星参数、站点实时雨衰及目前的资源使用现状,计算可用编码调制方式下的资源需求结果,然后根据分配策略规则,优选分配结果(编码调制方式、发送功率等)。资源分配策略中也可以增加对系统Qos(如业务优先级和站点优先级等)的管理,针对不同站点或业务提供差别服务。

2.4软件实现设计资源分配在FDMA/DAMA卫星通信网络管理系统中是一个相对独立的功能,可以设计成一个通用化的软件模块嵌入到网络管理系统,实现对资源分配策略的控制。资源动态分配软件模块化组成方案如图3所示,包含以下软件模块:①分配计算模块;②链路计算模块;③策略处理模块;④接口适配模块。分配计算模块控制资源分配计算过程,依资源使用现状分配频率带宽资源。链路计算模块为分配计算模块提供对链路性能计算的功能。策略处理模块按照策略规则确定最终资源分配结果。接口适配模块向FDMA/DAMA卫星通信网络管理系统提供接口,从网络管理系统取得具体业务的资源请求,并将资源分配结果返回给网络管理系统。基础数据支持资源动态分配软件功能的实现,包括地球站信息、卫星覆盖信息、雨衰数据和策略规则等。基础数据可以存储在数据或磁盘文件中,在资源动态分配软件初始化时读入内存使用。资源动态分配软件模块化的组成结构使软件具有通用化特点,仅需适当修改接口适配模块,就可以将软件接入到不同的FDMA/DAMA卫星通信网络管理系统。资源动态分配软件的具体形式可以是DLL动态库或EXE执行文件,与网络管理系统接口可以是API函数或SOCKET网络接口。

3系统测试验证

原某FDMA/DAMA体制卫星通信系统,设计使用固定的调制编译码方式,功率采用建设初期预估值(不考虑雨衰)。按本文资源分配策略对该系统进行优化改造,并对改造前后系统进行测试统计。定义一段时间T内的系统带宽利用率R为每次呼叫成功链路占用带宽量与占用时间乘积的累加和,与系统管理带宽总量B总与测量期时间T乘积的比值。分别测试统计优化前后实际系统运行10天时间内的呼叫情况及资源占用情况,统计数据如表1所示。测试统计数据显示,系统一次呼叫成功率(呼通率)从原系统的0􀆰816优化后提高到0􀆰906,带宽利用率从0􀆰388提高到0􀆰482,均有较大程度提高。测试验证了本文资源分配策略优化方案的有效性和科学性,在保证系统可靠运行的前提下,提高了呼通率、带宽利用率。

4结束语

FDMA/DAMA卫星通信网资源分配是一个复杂的管理过程,综合分析了资源分配中的多种影响因素,研究设计了分配策略和软件实现方案,并在实际FDMA/DAMA卫星通信网管理中应用,运行稳定可靠。测试结果表明,应用本文资源分配策略后系统资源管理性能(呼通率、带宽利用率等)得到明显改善。在其他体制卫星通信网中同样存在资源分配策略问题,如MF⁃TDMA卫星通信网多个载波频率的动态分配,也值得进行针对性的资源分配策略研究。

卫星通信论文 篇8

热备件平时与工作设备(主用设备)一起存放于地球站收发设备在线机柜中,与主用设备一同构成二备一工作模式,当主用设备出现故障时,只需通过设备面板本地控制或监控台远程控制进行主备切换,即可完成热备件的取用;对于离线的冷备件,系统采用以下取用策略:(1)系统某主用设备单元故障报警,通过本地控制/远程控制方式进行主备切换,恢复系统正常工作状态;(2)利用备件管理系统查询仓库中相应故障设备单元的完好备件余量,并打印显示完好备件存放位置和相关信息;(3)若有余量且备件性能检测系统中也有相应备件,则率先从备件性能检测系统中取出相应备件进行更换,恢复系统双机热备工作模式,同时从仓库中取出一个相应备件单元放入备件性能检测系统中,恢复备件性能检测系统的完整性,并记录更换信息;(4)若有余量但备件性能检测系统中无相应备件,则根据具体信息从相应库位中选择一个备件进行更换,恢复系统双机热备工作模式,并记录更换信息;(5)替换下的故障单元放入备件性能检测系统进一步确认故障状态和进行故障定位分析,然后做好标记,再存入专门的故障设备仓库中,同时进行故障单元的入库登记;(6)若无可用备件,则修改系统对应故障设备单元的热备件状态以及系统对应的该设备单元的双机热备工作状态,上报备件缺少情况,以便及时采购进行备件补充。

2备件性能检测系统

基于上述备件维护管理策略可知,要实现地球站收发设备备件的离线性能检测,拟设计构建备件性能检测系统,以对备件性能的长期稳定性进行测试与维护,使更换备件的上线成功率达100%,确保更换备件的可用性和可靠性,从而为卫星通信系统的连续稳定运行提供可靠保障。地球站收发设备的备件分为系统级备件和部件级备件,其中系统级备件是指具备集成为有线闭环测试系统条件的备件,部件级备件是指不具备集成为有线闭环测试系统条件的备件。依据收发设备的备件分类情况,可将备件性能检测系统分为系统级备件性能检测系统和部件级备件性能检测平台,组成框图如图1所示。

2.1系统级备件性能检测系统

备件性能检测系统是针对具备集成为有线闭环测试系统条件的备件进行测试的平台,其设计思想是:利用信息产生器及模拟转发器将地球站的发送链路和接收链路的部分零散备件集成为一个自发自收的有线闭环检测链路,用来完成系统级备件的加电测试,并通过监测环路时延值达到对备件的检查与维护,确保更换备件的可用性和可靠性。同时,可完成返修设备及新增设备的验收考核测试、新进人员的业务培训、模拟故障处理演练等任务,具体组成框图如图2所示。

2.2部件级备件性能检测平台

部件级备件性能检测平台是针对不具备集成为有线闭环测试系统条件的备件进行测试的平台,其设计思想是:利用信号源、频谱仪、矢量网络分析仪、逻辑分析仪、功率计等测试仪器对零散的部件级备件进行定期检测维护和指标测试,以确保部件级备件的可用性和可靠性。同时,可作为新购置备件的验收测试平台,具体组成框图如图3所示。

3备件管理系统

3.1备件管理系统的体系结构

对于地球站收发设备的备件设备的管理,传统的管理方法是直接将备件设备放入库房,需要时人工从繁杂的备件设备中查找需要更换的备件设备,费时费力且延误备件上线时间,降低了系统不间断运行的可靠性;并且在系统备件状态发生变化时,表格记录形式无法得到及时更新,容易造成管理上的混乱。因此,为提高备件的使用效率,解决备件分散和备件存取造成的管理混乱等问题,本文建立备件管理系统,通过构建备件信息数据库,设计实现备件出入库管理和备件档案管理流程,实现备件设备信息的科学管理,并为地球站装备管理和采购提供数据支持。备件管理系统的体系结构如图4所示。

3.2备件管理系统的功能模块

本文从系统实用性出发,对信号收发备件管理系统进行需求分析,将系统功能模块划分为基本信息管理、备件库存管理、备件计划管理、使用信息管理、查询统计管理、系统信息管理等几个部分。系统各模块的功能如下:(1)基本信息管理基本信息管理用来设置系统的基础数据信息,如用户信息、备件信息、备件供应商信息、仓库及库位信息等,以便为其它的管理模块提供一个统一规范的基础性数据,并且方便系统的维护。(2)备件库存管理备件库存管理是备件管理系统最为重要的管理模块之一,该模块涵盖了备件从入库到出库之间的全部业务流程,主要实现对备件入库管理、备件出库管理、备件档案管理、库存备件明细、库存备件汇总以及库存报警等的管理。(3)备件计划管理备件计划管理主要实现备件采购计划工作中的备件计划、备件需求统计等功能。(4)库房管理库房及存放柜管理是对备件存放的直接映射,通过库房信息以及备件存放位置的信息,方便快捷地将备件定位到库房存放柜中,解决了原始的纸面记录或无库存记录造成的弊端。(5)使用信息管理使用信息管理主要记录备件上机使用情况,为合理采购备件,提供了第一手资料。(6)查询统计管理查询统计管理可提供灵活多样且直观的查询统计方式,统计出的数据准确可靠,用户可以通过统计汇总出各个备件的库存、维修、使用等数据,为领导决策提供依据。(7)系统信息管理系统信息管理主要完成对信号收发备件管理系统的用户信息和用户密码修改的管理。

4结论

本文取得的研究结果为地球站收发设备的备件性能检测、故障单元备件合理更换以及备件的系统化管理提供了一套科学有效的解决方案。根据系统发送链路和接收链路的特点,利用零散备件设计形成闭环检测链路,对备件进行性能维护测试,确保了更换备件的完好性,提高了系统的可靠性;研制设计的备件管理系统对所有备件进行系统化管理,方便备件的查找和及时补充,大大提高了卫星通信系统的维护效率,为系统的稳定可靠运行提供了重要保障。同时,本文研究的备件维护管理策略、备件取用策略、备件管理方案等成果,具有广阔的应用前景和推广价值,可推广应用于其它卫星系统中。

卫星通信论文 篇9

1.1信号采集天线对准某颗通信卫星(如中星6A)后,移动车载站上的卫星信标接收机会收到一定强度的卫星信标,信标值的大小用来衡量对星的准确度。信标机提供串行通信接口,通过串口服务器,将串行通信做协议转换为网络通信协议,再通过一根网线与交换机连接,最终与控制计算机进行数据交换。设备连线后,在计算机上要进行虚拟串口映射,即把串口服务器的串口映射到计算机上,映射成功后,就可以把这些虚拟串口作为计算机上的串口使用,解决计算机本身无串口的问题。载波的发射状态是通过改变调制解调器参数来实现的,控制载波发射状态实际上通过控制调制解调器的发射状态继而达到控制载波状态的目的。调制解调器提供网络接口,通过交换机最终与控制计算机进行数据交换。控制软件实时监视信标机和调制解调器的工作状态,以此作为发送控制指令的依据。

1.2信号处理通过监控软件完成,为了不占用更多的主线程资源,监控软件分别建立两个独立的线程CThreadBeacon信标机线程类和CThreadModem调制解调器线程类,通过这两个线程的通信处理载波的关闭与开启。当确定天线进入遮挡区后,CThreadBeacon信标机线程根据当前的信标强度和调制解调器载波发射的状态,发送打开或关闭载波的消息给CThreadModem线程。CThreadModem线程主要有两个作用,一是读取调制解调器当前的参数,明确设备的工作状态,二是负责接收由CThrea-dBeacon线程发送过来的消息,根据消息的具体内容,向调制解调器发送相应的控制指令。

车载站在载波发射的行进中,如遇到高大的货车或小面积的建筑遮挡瞬间遮挡时,这时关闭载波是不必要的,故在信标机线程中,设定当遮挡超过10s后发送关闭消息给调制解调器线程,进而关闭载波发射。同样在离开遮挡区超过5s后发送开启消息给调制解调器线程,进而开启载波发射。具体流程见图1“载波自动关闭流程图”。

2实现过程

软件以visualc++6.0作为开发编译环境,在基于对话框的应用程序界面中,运用多线程串口通信编程和SNMP网络编程方法,利用线程间通信机制,完成载波自动关闭功能。软件启动时,建立CThreadBeacon线程并启动运行,运用串口通信编程,在InitInstance函数中,初始化串口参数,线程中使用定时器,频率为300ms,按照通信协议格式,以查询方式读取信标强度,经过适当处理后,以浮点数显示在监控界面上,范围是0~10,根据浮点数的大小,来判定天线是否进入遮挡区,如当信标强度小于3时,确定天线进入遮挡区,再以PostThreadMessage的方式发送消息给CThrea-dModem线程。建立CThreadModem线程,运用SNMP网络编程,在In-itInstance函数中,初始化调制解调器SNMP相关参数,创建两消息响应函数OnGetParam_Modem用来获取设备当前状态,和OnSetParam_Modem用来接收由CThreadBeacon线程发送过来的消息,根据消息的附加参数和当前调制解调器的状态,确定发送关闭或开启载波的指令。

3结语

车载站在进行移动卫星通信过程中,如果天线偏离目标卫星,对周围的环境同样产生辐射危害,及时关闭发射载波也是至关重要,本文阐述的载波自动关闭系统同样适用于天线偏离目标卫星的情况。软件使用方便,已经成功用于多套车载站项目。

卫星通信论文 篇10

电力通信网是为了保证电力系统的安全稳定运行应运而生的。它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。我国的电力通信网经过几十年风风雨雨的建设,已经初具规模,通过卫星、微波、载波、光缆等多种通信手段构建而成为立体交叉通信网。随着无线通信技术的发展,无线通信系统的特性发生巨大的变化。鉴于采用无线通信网不依赖于电网网架,且抗自然灾害能力较强,同时具有带宽大、传输距离远、非视距传输等优点,非常适合弥补目前通信方式的单一化、覆盖面不全的缺陷。本文简单介绍一下无线通信传输体制的应用特点和优缺点,并分析其在电力系统的应用前景。

二、无线技术介绍

(一)无线通信技术的概念

目前,无线通信及其应用已成为当今信息科学技术最活跃的研究领域之一。其一般由无线基站、无线终端及应用管理服务器等组成。

(二)无线通信技术的发展现状

无线通信技术按照传输距离大致可以分为以下四种技术,即基于IEEE802.15的无线个域网(WPAN)、基于IEEE802.11的无线局域网(WLAN)、基于IEEE802.16的无线城域网(WMAN)及基于IEEE802.20的无线广域网(WWAN)。

总的来说,长距离无线接入技术的代表为:GSM、GPRS、3G;短距离无线接入技术的代表则包括:WLAN、UWB等。按照移动性又可以分为移动接入和固定接入。其中固定无线接入技术主要有:3.5GHz无线接入(MMDS)、本地多点分配业务(LMDS)、802.16d;移动无线接入技术主要包括:基于802.15的WPAN、基于802.11的WLAN、基于802.16e的WiMAX、基于802.20的WWAN。按照带宽则又可分为窄带无线接入和宽带无线接入。其中宽带无线接入技术的代表有3G、LMDS、WiMAX;窄带无线接入技术的代表有第一代和第二代蜂窝移动通信系统。

1.主流无线通信技术

从技术发展的趋势可以看出,以OFDM+MIMO为核心的无线通信技术将成为未来无线通信发展的主流方向。而目前基于该技术的无线通信技术主要有:B3G、WiMAX、WiFi、WMN等4种技术。

2.其他无线通信技术

除了上述主流的无线通信技术外,目前已存在的无线通信技术还包括:IrDA、Bluetooth、RFID、UWB、集群通信等短距离通信技术及LMDS、MMDS、点对点微波、卫星通信等长距离通信技术。

(1)IrDA:InfraredDataAssociation,是点对点的数据传输协议,通信距离一般在0~1m之间,传输速率最快可达16Mbps,通信介质为波长900纳米左右的近红外线。

(2)Bluetooth:Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术,通信介质为2.402GHz到2.480GHz的电磁波。

(3)RFID:RadioFrequencyIdentification,即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。RFID由标签、解读器和天线三个基本要素组成。

(4)UWB:UltraWideband,即超宽带技术。UWB通信又被称为是无载波的基带通信,几乎是全数字通信系统,所需要的射频和微波器件很少,因此可以减小系统的复杂性,降低成本。

三、无线技术优劣分析

(一)WLAN技术分析

Wi-Fi的技术和产品已经相当成熟,而且大批量生产。该技术适用于无线局域网,作为有线网络的延伸,对于特殊地点宽带应用,尽管Wi-Fi技术应用非常广泛,但是它依然在安全性上存在一定的安全隐患,Wi-Fi采用的是射频(RF)技术,通过空气发送和接收数据。由于无线网络使用无线电波传输数据信号,所以非常容易受到来自外界的攻击,黑客可以比较轻易地在电波的覆盖范围内盗取数据甚至进入未受保护的公司内部局域网。

(二)WiMax技术分析

WiMax是一个先进的技术,推出相对较晚,存在频率复用性小、利用率低的问题,但由于最近才完成标准化,该技术的大规模推广还需要实践考验。从应用前景看,该技术可以在较大范围内满足上网要求,覆盖可以包括室外和室内,可以进行大面积的信号覆盖,甚至只要少数基站就可以实现全城覆盖。WiMax由于其技术的先进性和超远的传输距离,一直被业界看好,是未来移动技术的发展方向,并提供优良的最后一公里网络接入服务。

(三)WMN技术分析

WMN是正在研究中的技术,在研究中不断地在不同方面结合各种技术的特点进行融合,而且暂时没有一个成熟的产品系列来支持该技术的大规模应用。从应用前景看,WMN这一新兴网络不仅在无线宽带接入中有着广阔的应用空间,在其他方面如结合数据、图像采集模块可以对目标对象进行监控或数据采集,并广泛应用到环境检测、工业、交通等领域。随着其他技术的不断更新完善,WMN更好地与之相融合、互补,从而能够扬长避短,发挥出各自的优势。

(四)3G技术分析

3G于1996年提出标准,2000年完成包括上层协议在内的完整标准的制订工作。3G网络部署已具备相当的实践经验,有一成套建网的理论,包括对网络的链路预算、传播模型预算以及计算机仿真等。从商用前景看,目前,3G在部分地区已得到大规模的商业应用,比如欧洲很多国家、日本、韩国等都已经建设了3G的网络。3G技术已经进入可以实用的阶段,还有很多国家和地区正在建设或将要建设3G网络。

(五)LMDS技术分析

本地多点分布业务系统LMDS是一种提供点对多点通信的固定宽带无线接入技术,其工作频率在20GHZ以上,利用毫米波传输,可在一定的范围内提供数字双工语音、数据、因特网和视频业务,是一种非常好的宽带固定无线接入解决方案。在最优情况下,距离可达8公里;但是由于受降雨的原因,距离通常限于1.5公里。

其主要工作原理是通过扇区或基站设备将ATM骨干网基带信息调制为射频信号发射出去,在其覆盖区域内的许多用户端设备接收并将射频信号还原为ATM基带信号,在无需为每个用户专门铺设光纤或铜缆情况下,实现数据双向对称高带宽无线传输。

(六)MMDS技术分析

MMDS的主要缺点是有阻塞问题且信号质量易受天气变化的影响,可用频带亦不够宽,最多不超过200MHz。其次,MMDS对传输路径要求非常严格。由于MMDS采用的调制技术主要是相移键控PSK(包括BPSK、DQPSK、QPSK等)和正交幅度调制QAM调制技术,无法做到非视距传输,在目前复杂的城市环境下难以推广应用。另外,MMDS没有统一的国际标准,各厂家的设备存在兼容性问题。

(七)集群通信技术分析

数字集群系统具有很多优点,它的频谱利用率有很大提高,可进一步提高集群系统的用户容量;它提高了信号抗信道衰落的能力,使无线传输质量变好;由于使用了发展成熟的数字加密理论和实用技术,所以对数字系统来说,保密性也有很大改善。

数字集群移动通信系统可提供多业务服务,也就是说除数字语音信号外,还可以传输用户数字、图像信息等。由于网内传输的是统一的数字信号,因此极大地提高了集群网的服务功能。

(八)点对点微波通信技术分析

微波传输的优势主要体现在以下几个方面:第一,可以降低运营商的运营成本。与租用线路相比,微波系统的投资只要一年左右即可收回。第二,微波传输系统部署简洁快速。与传统的传输手段相比,其快速部署的优势可以更快地满足新业务发展的需要。第三,目前的微波产品对未来的发展是有保障的,对于运营商的新业务和新需求都可以给予很好的支撑。未来,微波传输系统将升级到全IP的平台之上,可以全面支持运营商未来的发展。

(九)卫星通信技术分析

利用卫星在有些人口不很密集的地区来配合陆地通信。在这些地区散布着范围较广但不密集的用户,可以利用卫星作为用户连至固定有线网的接入设施。在陆地通信网已经构成宽带多媒体通信网的环境下,利用卫星建成宽带卫星接入系统是比较好而切合实际的方案,经济又可靠。

但是卫星通信毕竟是采用卫星作为通信平台,其地面站的建设、通信信道租用费用都需要花费大量资金,而且通信资源为卫星通信公司所有,受其带宽的限制,使得大量数据的传输需要付出非常大的代价。因此,作为日常生产、生活使用是极为不经济的;而将卫星通信作为应急通信、作战通信、海外通信等则比较适合。

四、无线技术综合比较

目前无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围、不同的适用区域、不同的技术特点、不同的接入速率。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。

首先,从标准化程度上看,本报告所涉及的技术中,仅仅WMN技术没有成熟的标准体系,LMDS、MMDS、集群通信均有多种标准,只是没有统一的国际标准,其余的技术均已经完成标准化工作,并且都进行了试验网建设和商业网建设。

从频率上看,Wi-Fi技术、WMN均使用的是开放频段,WiMax技术、3G技术等其他技术使用的是授权频段。

从覆盖范围上看,Wi-Fi技术、WMN技术属于局域网无线接入技术,仅覆盖35m~100m;WiMax技术、3G技术、LMDS技术、MMDS技术、集群通信属于城域网接入技术,覆盖范围在1km~54km不等,而卫星通信、点对点微波则属于广域网技术,通常用于通信主干组网建设。

从传输速率上看,点对点微波和卫星通信属于干线传输技术,不同的情况速率变化较大,而其余的技术均为接入技术,仅仅是3G技术接入速率最小,仅为384k,而其余技术均为几十M甚至上百M的速率。

从调制技术上看,其中WiFi技术、WiMax技术、WMN、3G技术均采用最新的调制技术OFDM,其余的技术均未采用OFDM调制技术。

从天线技术上看,仅仅3G和WiMax技术采用了MIMO技术,而其他技术均未采用MIMO技术;从传输环境上看,仅仅WiMax技术和3G技术支持非视距传输,其余技术均要求视距传输环境;从网络安全和QoS机制上看,WiMax技术和3G技术在这方面做得比较优秀、完善,其余的均存在较大的问题。

五、无线技术的应用及展望

目前,在电网电力系统通信中仍然以具有高传输率、高带宽、高可靠性等特性的光纤通信为主,但随着电网对灾难应急、配网自动化、办公智能化等需求的提出,无线通信将以其迅速部署、不受地面限制等特点寻求到在电力系统通信中的应用。因此,无线通信可以成为电力系统通信的一个重要补充手段,为电力系统构建综合通信网提供非常重要的一个部分。

一键复制全文保存为WORD
相关文章