天文学论文(最新7篇)

论文是各专业学员都必须完成的集中实践性教学环节,不能免修。要求每位学员在学校指定的指导教师的指导下,独立完成论文的写作,为大家精心整理了天文学论文(最新7篇),在大家参照的同时,也可以分享一下给您最好的朋友。

天文学论文 篇1

宇宙中有第二个地球吗?宇宙是如何形成的?为什么地球能产生生命?太阳的运动对地球有什么影响?玛雅人为什么会消失?天文学中的十万个为什么总能勾起人们的求知欲望!

天文学是自然科学中的一门基础学科,它和人类历史同样悠久。天文学的研究内容和许多概念总是伴随着人类社会的文明和进步而不断发展的。

在望远镜发明以前,天文观测采用的是目视方法,直接观测天体在天空的视位置和视运动,另外也粗略的估计星星的亮度和颜色。17世纪以后相继有了望远镜、分光镜和光度计,不仅提高了天体位置观测的准确度,而且扩大了人们对宇宙的认识。到了20世纪,由于大口径望远镜的问世,使得人类探测宇宙的深度和广度与日俱增,不少模型、学说由观测得到证实,新天体、新发现大量涌现。20世纪30年代以后,人们越来越广泛的使用无线电方法研究天体和宇宙间的辐射,从而诞生了射电天文学。20世纪50年代人造地球卫星发射成功,人类把观测范围由地面扩展到地外空间,天文学家可以自由地探测天体的各种辐射。现代,天文空间探测已经有了长足的发展,人类不仅把望远镜送上天,而且借助太空飞行器踏上月球,或把仪器送到其他行星上进行直接观测或实验。

我一直都觉得天文学是一门很神秘的学科,尤其在观看课堂的视频后,真是不得不感叹天文学的魅力,以及现在科学的强大。

对于天文学,我最感兴趣的是以下几个方面:

一、宇宙大爆炸

宇宙大爆炸(Big Bang)是一种学说,是根据天文观测研究后得到的一种设想。 大约在150亿年前,宇宙所有的物质都高度密集在一点,有着极高的温度,因而发生了巨大的爆炸。大爆炸以后,物质开始向外大膨胀,就形成了今天我们看到的宇宙。

比利时牧师、物理学家乔治·勒梅特首先提出了关于宇宙起源的`大爆炸理论,但他本人将其称作“原生原子的假说”。 这一模型的框架基于了爱因斯坦的广义相对论,并在场方程的求解上作出了一定的简化。描述这一模型的场方程由苏联物理学家亚历山大·弗里德曼于1922年将广义相对论应用在流体上给出。1929年,美国物理学家埃德温·哈勃通过观测发现从地球到达遥远星系的距离正比于这些星系的红移,这一膨胀宇宙的观点也在1927年被勒梅特在理论上通过求解弗里德曼方程而提出,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星团在视线速度上都在远离我们这一观

察点,并且距离越远退行视速度越大。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去的距离曾经很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个极高密度且极高温度的状态,在类似条件下大型粒子加速器上所进行的实验结果则有力地支持了这一理论。

2003 年 2 月 12 日,美国宇航局公布了探测器拍到的宇宙“婴儿期照片”,为宇宙大爆炸理 论提供了新的依据。根据这张照片科学家还精确地测量出了宇宙的实际年龄是 137 亿年。图 片中的微波光线来自宇宙大爆炸后的38万年,大约是在130多亿年前。美国宇航局的科学家说, 这张照片中可以观测到的辐射是一种电磁波,它充满了整个宇宙。电磁波里包含的微观模型信息,显示了形成星系以及我们周围一切结构的萌芽的特征。这次公开的宇宙“婴儿期照片”清晰地显示了这个遗迹的存在,有力地支持了宇宙大爆炸理论。另外, 图片还显示宇宙中最早的恒星诞生于宇宙大爆炸发生的2亿年后,比许多科学家认为的要早 得多。宇宙起初是由不断相互影响的粒子和射线所构成的一团炽热且无定形的云状物组成的:大爆炸后又过了40万年,宇宙膨胀和冷却到一定程度时,电子和质子结合成中性原子,它们再 与周围的射线相互影响。

经过科学研究,目前被绝大多数人接受的结论是:宇宙诞生之前,没有时间,没有空间,也没有物质和能量。大约150亿年前,在这片四大皆空的“无”中,一个体积无限小的点爆炸了。时空从这一刻开始,物质和能量也由此产生,这就是宇宙创生的大爆炸。但,若真是四大皆空的状态,那么宇宙为何会爆炸?爆炸后的物质又是从哪里来的?不是说自然界的一切物质都是守恒的,那么这个宇宙大爆炸是如何无中生有的呢?

二、黑洞

黑洞(black hole )是由一个只允许外部物质和辐射进入而不允许物质和辐射从中逃离的边界即视界所规定的时空区域。

根据第七节课影片的介绍,黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。物质将不可阻挡地向着中心点进军,直至成为一个体积很小、密度趋向很大。而当它的半径一旦收缩到一定程度,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。2010年11月16日凌晨1点30分,美国宇航局宣称,科学家通过美国宇航局钱德拉X 射线望远镜在距地球5000万光年

处发现了仅诞生30年的黑洞。这是有史以来所发现的最年轻的黑洞。

据科学家揣测,银河系的中心是一个超巨型黑洞。超巨黑洞位于星系中心,据推测每个星系都有,质量一般约为星系总质量的0.5%。目前,关于超巨黑洞的形成主要有两种理论。一种观点认为,它可能是随着星系的诞生一次性产生的。但也有推测说,超巨黑洞是以质量更小的黑洞为基础形成的,后者就好比是一些“种子”,随着时间的推移进化成了巨型黑洞。

因为所有的能量都是守恒的,科学家们提出设想,既然宇宙中有黑洞,那么一定存“白洞”。黑洞可以用强大的吸力把任何物体都吸进去,而白洞可以把这些东西都吐出来。科学家们设想,黑洞与白洞是连在一起的,黑洞把物质吸进去,物质在里面会经过一个叫做“奇异点”的东西,然后物质就到达了白洞的“管辖范围”,会被白洞“吐”出来。然后物质就到达了另一个宇宙(第一平行宇宙到达第二平行宇宙)。但是,如果白洞存在,所有的物体将会以极快的速度离开。这会是我们这个宇宙形成的原因吗?我们是否就生活在被白洞所抛出的物质至上呢?

三、太阳活动与农业生产

太阳活动主要是指周期为11年左右的太阳黑系活动和太阳爆发活动,它们将对地球上的水文、气候、地震活动以及无线电通讯、卫星运行和人类健康有极大的影响。对太阳黑子的活动,我国早在2000多年前 ( 公元前4 3 年汉光帝永光元年) 《 汉书》中就有 “日中黑子,大如弹丸”的记载。1 8 4 4 年德国天文学家许瓦培首先提出太阳黑子活动具有周期性变化,其平均长度约为111年。后经国际规定,从资料比较可靠的1755年那次黑子数量最低年起作为第一个周期。从1755年到1976年,即第一周到2 1 周始,从1 9 8 6 年起太阳黑子活动使进入第22周,1990年太阳活动进人高峰期,黑子活动和太阳耀斑活动频繁。在太阳黑子活动的每个周期中,太阳黑子数通常从极小直径经 3~4年后达到黑子数的极大值,到极大值后黑子数下降较慢,大约要经7~8年后才降到黑子数的极小值,然后开始下一周期。峰年间隔最长1 7.1 年 ( 第4周) ,最短7.3 年 ( 第 7周) ,平均周期为11.1年。黑子极大年又称“太阳活动峰年”。

太阳活动周期的气候变化。 太阳辐射是地球上能量的主要源泉,也是支配地球气候的外因中重要的因素之一。反映在太阳黑子数的变化是,当太阳黑子数增多时,太阳活动增强,结果使地球气温升高; 当太阳黑子数出现特多时,有时太阳辐射反而减弱,使地球气温下降。气象学家从长期的气候变化规律中观测到,太阳黑子活动周期的单数周与双数周气候变化存在着明显的差异。在太阳黑子活动周期数的单数周, 气候一般都是由冷转暖;在双数周气候一般都是由暖变冷。 研究指出,在太阳发生耀斑大爆发后的一个月内,一些地方的

地面温度有明显的升高。黑子峰年和谷年或峰年、谷年附近, 会出现大范围气温偏低,春寒,夏韶之气候。我国著名气象学家竺可桢等人曾利用大量的历史资料,发现太阳活动频繁,我国往往是南涝北早, 1 9 8 0 年,1 9 9 1 年正是太阳活动峰年,长江中、下游出现了严重的洪涝灾,庄稼被淹,而北方却千旱,伏雨奇映。

太阳活动峰年与气候异常。根据统计分析资料表明,天气和气候异常与太阳黑子活动似乎有一定相关性。太阳活动峰年,大气径向 ( 南北向) 环流加强、发展,有利于南北冷暖空气交换,造成温带气旋活动次数增多,高空多大槽大脊活动,多暴风雪、大到暴雨、雷阵雨、冰雹等强对流性天气。同时。当冷空气频繁南下时,天气寒冷,暖空气北上时,回暖快,升温多。在冬春季节常有寒潮、降温,冷雨湿雪,春寒夏凉的天气。太阳活动与农业生产的关系极为密切,这种相关的科学依据,目前科技界还只能作一些粗浅的研究和分析。我们只有掌握和利用太阳活动规律,合理安排生产,方可夺取农业丰收。

四、玛雅预言

关于玛雅人预言的2012世界末日是我最感兴趣的一个部分。地球上有多处迹象表明玛雅人曾经生活在这个地球上过,可是他们为什么消失了?在过去的时间里,也曾有许多关于世界末日的说法,但当所被预言的那一刻真正到来时,所有的预言就不攻自破了。那么玛雅预言也是这样吗?随着2012的渐渐来临,关于玛雅预言的有关事迹、传闻、猜测越来越多。玛雅预言受到了前所未有的关注!

根据玛雅历法的预言传说,我们所生存的世界,共有五次毁灭和重生周期——每一周期即所谓的“太阳纪”。按照这一传说,现在我们正处在第四个“太阳纪”,而2012年左右将是“第5太阳纪”的开始;并且,当时的玛雅人认为,在每一纪结束时,都会在我们生存的家园上演一出惊心动魄的毁灭悲剧。

玛雅预言为何会受到如此多的关注呢?

玛雅人认为一个月等于20天,一年等于18个月,再加上每年之中有5未列在内的忌日:一年实际的天数为365天,这正好与现代人对地球自转时程的认识相吻合。玛雅民族在天文学方面的成就是十分突出的。

玛雅古国有五大预言:

1:玛雅文明的终结。也就是他自己的末日,自己预测到了。却改变不了。

2:汽车,飞机,火箭的出现时期。

3:大魔头(希特勒)的出生和死亡的大致时期。

4:毁灭性战争的爆发时期(一二战)。

5:2012年12月21日太阳落下以后。将不会出现。

这五大预言中的前四个都已准确的实现,如今就差世界末日这一预言。它会像前四个预言一样准确的实现吗?

科学家对玛雅预言并不信以为然,他们首先利用玛雅历法来揭穿所谓的“世界末日”预言。玛雅历法并没有结束于2012年,因此玛雅人自己也没有把这一年当作是世界的末日。不过,2012年12月21日(冬至)肯定是玛雅人的一个重要日子。美国科尔盖特大学考古天文学家安东尼-阿维尼是一名玛雅文化研究专家。阿维尼表示,“在玛雅历法中,1872000天算是一个轮回,即5125.37年。”

玛雅人对于时间的计算比其他许多文化都要精细。阿维尼介绍说,玛雅人曾经发明了所谓的“长历法”,这种历法把最初的计算时间一直追溯到玛雅文化的起源时间,即公元前3114年8月11日。根据“长历法”,到2012年冬至时,就意味着当前时代的时间结束,即完成了5125.37年的一个轮回。长历法于是重新开始从“零天”计算,又开始一个新的轮回。阿维尼认为,“这仅仅是一个重新计时的思想,与我们每年元旦或周一早上重新开始一年或一周生活完全一样。”

也有一种这样的说法,地球环境正在遭受前所未有的破坏,2012世界末日说纯粹是为了提醒人类保护地球的重要性。最近世界总是不太平静,地震、暴雨不停侵袭着人类的家园,造成人类巨大的损失。无论2012是否真的存在,我们都应该珍惜每一天的美好生活!

五、外星文明

茫茫宇宙中,地球上的人类建立的文明是微不足道的。因为地球文明是如此短暂,人类开始创造文明才不过几万年,发展科学技术不过几百年,探索航天技术不过几十年,这和地球年龄的46亿年、银河系年龄100亿至150亿年相比,何异于沧海一粟。因此,我始终坚信外星人是真实存在的,他们就在我们的周围,在某一个星球上,只是我们的科学技术还不够发达,我们无法发现对方。

早在19世纪,人们就在想办法和外星文明联系上。在20世纪的四分之一的时间中,我们已在不停地用电波轰击太空,现在电波在所有方向上已经传播了70光年,覆盖了数千个恒星系统。我们可以设想,某个星球上的智慧生命,现在已经打开收音机,正在收听地球上的一些流行歌曲。

目前科学家一直不懈的努力着、假设着外星人的一切,外星人居住的环境或许与地球相似,但由于大气比例不同,他们生活的星球或许比地球高温,或许比地球潮湿,或许比地球压强大。或许那个存在生物的星球的环境真的会像视频中那样,有飞鲸、跟踪鸟、气球草。

天文学的一切以其未知性和不确定性不停的勾起人们的求知欲望。人们不停假设、不停研究,想要知道宇宙是如何形成的?黑洞究竟是怎么一回事?外星文明是否存在?外星人是什么模样?

天文学的研究对于我们的生活有很大的实际意义,对于人类的自然观有很大的影响。本学期我选修了《天体物理概观》这门课程,向老师绘声绘色的讲课、播放有趣的天文短片,都让我收获了很多关于天文学的知识,也有了不少感想,使我对天文学的定义、研究方向、研究领域、研究理论以及矮行星和中子星等重要的天体有了系统的了解,也丰富了我的知识体系,拓宽了我的知识面。我期待天文学取得更大的进展,也期待我国的科学事业的发展越来越好。

最后,祝老师身体健康,万事如意!

参考文献

天文学论文 篇2

天文学是一门古老的科学,自有人类文明史以来,天文学就有重要的地位,下面为大家提供了关于天文学的论文,一起来看看吧!

【摘要】示范性中学拥有较好的教学资源和硬件条件,给校本课程开发创造了有利条件。文章以江苏省震泽中学为例,探讨了开设天文实践课的可行性。

【关键词】示范性中学;天文;实践课

示范性中学通常是所在地区教学力量比较雄厚,成绩相对突出的学校,还获得了较好的教学资源和硬件条件,很多学校配备了天文观测设备,个别学校甚至还有独立的天文台,这对于开展天文活动与相关教学提供了物质上的支持和保证。校本课程的开发和设置已经成为新课改的热点,它对于增加学生的学习兴趣,提高学生的学习能力,培养学生的创造性、批判性思维都有着独特的作用。地理是义务教育阶段学生认识地理环境、形成地理技能和可持续发展观念的一门必修课程,怎样在校本课程中发挥地理学科的优势和特色就成为教师必须考虑的问题。俗话说:“上知天文,下知地理。”天文和地理之间联系紧密,因而在中学开设天文实践类的地理校本课程具有可行性。本文将对这些问题进行讨论。

一、开设天文实践课的重要意义

《高中地理新课程标准》明确指出:地理学是研究地理环境以及人类活动与地理环境相互关系的科学。1.符合新课改要求地理课程要促使学生学习、观察、了解周围的客观世界,熟悉我们周围的地理环境。而环境从微观讲,有我们身边的环境,如学校环境、城市环境等,从宏观讲,有海洋环境、地球环境等,最宏观的环境就要算宇宙环境了,它也是地理环境的重要组成部分,当然也属于学生学习、观测的内容。但由于种种原因,在现阶段中学教育中,有关天文宇宙环境的学习几乎一片空白。因此,天文观测活动的开展,了解人类生活的宇宙环境就完全符合新课程改革的方向,属于新课改的内容。2.对学生的人格和思想产生重要影响“研究”二字指明了中学地理教育不仅担负着地理基础知识的传授,还要对学生进行智能训练和思想教育,形成正确的世界观、人生观和价值观,以及对待处理人地关系的态度和思维方式。在这些方面,天文无疑有着极大的优势,面对浩瀚无垠的宇宙,地球不过是一颗普通的行星,人类更是沧海一粟,微不足道,根本没有理由,也没有资格凌驾于万物之上。同时,天文学是一种严谨的自然科学,它有客观、科学的研究方法和思维模式,会对学生的人格和思想产生重要的影响。由此可知,天文实践课完全满足新课改的要求,还顺应了时代发展对中学地理教学的需求,这是时代发展的趋势。因此,教师要充分认识这种变化,主观上重视,积极应对时代的要求,把天文实践活动开展起来。

二、天文实践课的突出特点

1、较强的实践操作性天文观测是操作性很强的活动,首先要具备一定的基本条件,如观测用的器具,天文望远镜及各种辅助设施;其次,观测者要具备一定的天文理论知识,或有专职的人员指导,保证观测活动的安全;最后,对客观事物或现象发生过程的真实描叙、记录,这就要求观测者能熟练运用、操作工具仪器,准确对天体搜索、跟踪、观察。2.较强的科学体验性天文观测有较强的思想教育性,在观测过程中人们会自觉或不自觉地树立科学的人生观、价值观。一方面,人们对神秘未知的星空充满了敬畏幻想,如果缺少科学体验性教育,受教育者仍然不能为社会服务、做贡献,甚至会走向反动和愚昧,成为社会的对立面;另一方面,人们进行天文观测时会亲身地感受、体验到闪烁的星辰是由实在的物质构成的,就连耀眼的太阳、辽阔的地球也只不过是宇宙中极普通的天体,从而建立唯物主义科学观、人生观,再辅以其他学科最终确立起科学的世界观,这才是教育的根本目的和最终归宿。3.培养学生的科学思维高中生这个年龄段恰好处于思维的形式运算阶段,也是形象思维向抽象思维过渡的重要时期,科学思维方式的建立和培养显得尤为重要。一方面,天文研究对象的特殊性决定了它必须综合利用各学科,特别是物理、数学进行严密的逻辑思维分析;另一方面,在中学阶段,人们习惯将地理视为文科,那么学生就习惯用文科的思维方式进行学习,偏重于知识的记忆和背诵,不重视理解分析,但事实上地理文理兼跨,既有文科内容,也有理科知识。例如,高一上册宇宙环境和大气环境的学习需要学生运用空间想象力,并注重各个知识点之间的联系,推导出其中的逻辑因果关系,天文的逻辑思维方法恰好有助于地理学习和地理教学。

三、天文观测对地理教学的促进作用

地理是在中学教育阶段设置的国家课程,对完善、丰富学生的知识结构有着重要的意义。高效地进行地理教学,是教师必须解决的问题。笔者从以下方面来阐述天文对中学地理教学的作用。1.改变对地理的错误认识传统教育对地理的偏见,使地理明显受到冷落。学生普遍认为学与不学无所谓,认真与不认真也无所谓,学好与学差同样无所谓。通过学校开展的天文观测学习,学生都有较大的转变。其原因在于天文观测的实践活动较多,学习天文知识要求思维缜密,紧跟科学发展最前沿,这就不由自主地改变了对地理的偏见,实际上欧美国家都已经开设天文课。2.促进教学方式向操作化、实验化、科学化发展教育的目的不仅仅是传授知识,更重要的是让学生掌握科学知识的发现、研究过程,在实践中培养发现问题、解决问题的能力。天文观测恰好符合这样的要求,让学生自己动手利用各种天文仪器探索新知,进而推动整个学校教学更具实践性。3.培养学生学习地理的兴趣天文观测是一种实践活动,它改变了地理教学单一的课堂学习模式,学生能够在自由的空间里自主开展学习,摆脱了教室的限制,因而学生对天文观测的积极性非常高。从江苏省震泽中学天文小组的各项活动情况来看,都有半数以上的学生报名参加,并形成一大批活跃骨干分子。例如,去年11月18日晚上,学生为了观看狮子座流星雨,彻夜不眠,与地理教师共同在学校操场上记录了美丽、壮观的天文现象。自此,师生不仅结下了深厚情谊,而且学生在学习地理时更加认真、专注,学习兴趣和积极性有很大提高。4.培养学生的逻辑思维能力不同的学科存在较大的差异,不仅表现在研究对象、研究方法上,思维的差异也是重要方面。地理偏重于综合性思维,往往疏于推理性思维,而新时代要求人们平衡发展,各方面的素质均衡。因此,天文学的推理思维就成了地理教育不足的有益补充。5.提高教师的教学能力天文学涉及许多相关学科,如物理、数学、机械自动化等。这就要求教师努力钻研,扩大知识面。另外,天文的独特性也要求教师在教学内容安排、课程结构设计、教学方法的选择上下功夫。总的来讲,它会显著提高地理教师的教学能力。

四、开展天文教育的途径和要求

1、实践活动课程化在天文教学中,要安排足量的实践活动,并用课程的形式将之固定、数量化,这样才不流于形式和口号,扎扎实实地落到实处,真正发挥天文教学的重要作用。2.教学管理制度化天文教学要有学期计划和活动安排,做到时间、内容、活动方式、辅导教师、活动效果评估逐项落实,并做好教材、教学双保证。学校要把教学计划检查、教学工作的督导、教学成绩的总结和评估作为常规工作的重要环节。3.教学研究课题化适当开展研究性学习,并将其作为课题内容,由师生共同完成,形式可以多样化,如组建天文协会、兴趣小组等。为学生将来的发展奠定基础、指明方向,真正培养学生的能力,落实素质教育。随着经济水平的发展,在我国东部的大部分中学已具备开展天文教学的条件,这不光是经济发展的结果,更主要是时代的要求及天文本身的特点共同作用的需要。

天文学论文 篇3

摘要:天文学是一门最古老的科学,他一开始就和人类的劳动和生存密切相关。他同数学、物理、化学、生物、地学同为六大基础学科。大地天文学也是由来已久,从公元前开始到现在,从用传统的方法到现在的各种精密的测量仪器,经历了翻天覆地的变化。本文主要从大地天文学的基础概念入手,主要利用大地天文学 只是来测定经纬度和其他,从而确定地面点的位置。基础知识主要有天球上基本的概念,天球与地球的关系以及天球与地球坐标系的关系与转换,运用这些关系,确定的一些大地天文学的测量方法和在各种方面的应用。

关键字:大地天文学,天球坐标系,坐标系转换,测量方法与应用

Abstract: astronomy is a one of the oldest science, he started and is closely related to the ministry of Labour and survival of human beings. He with mathematics, physics, chemistry, biology, study as the six basic subjects. Astronomy earth also has a long history, from the beginning to now, from the traditional way to the present all kinds of precision measuring instruments, undergone earth-shaking changes. This article mainly from the basic concept of the astronomy, the main use of the land of astronomy is to determine the latitude and longitude and the other, to determine the position of the ground points. Basic knowledge is mainly on the basic concept, the celestial sphere celestial's relationship with the earth and the relationship between the celestial coordinate system with earth and transformation, using these relationships, determine some of the astronomy measurement on the methods and applications in various aspects.

Key words: the astronomy, celestial coordinate, coordinate transformation, measuring method and application

目 录

摘 要 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 1

一 、大地天文学基本概念 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 1

二 、大地天文学的发展概况 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 1

三 、天球的基本概念 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 2

3.1天球的定义 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 2

3.2 天球的分类 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 2

3.3天球的两个特性 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 2

3.4 关于天球的基本知识 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 2

四 、天球与地球的相关关系。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 3

4.1 天球上与地球公转有关的圈、线、点 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 3

4.2 天球上与地球自转有关的圈、线、点 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 5

五 、天球坐标系 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 6

5.1 天球坐标系分类 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 6

5.1.1 地平天球坐标系 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 7

5.1.2 时角天球坐标系 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 8

5.1.3 赤道天球坐标系 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 9

5.1.4 黄道天球坐标系: 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 9

5.2 天球坐标系之间的转换 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 9

5.2.1 天文坐标与天球坐标之间的关系 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 10

5.2.2 地平坐标与时角坐标之间的关系 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 10

5.2.3 天球直角坐标系及其转换 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 11

六 、大地天文学的方法及应用。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 13

参考文献 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 15

大地天文学

一 、大地天文学基本概念 大地天文学是天文学的一个分支,也是大地测量的一个重要组成部分。它的重要任务,是用天文方法观测天体的位置来确定地面点在地球上的位置(经纬度)和某一方向的方位角,以供大地测量和其他有关的科学技术部门使用。 这是天体测量学与大地天文学的边缘学科,在测站(通常称为天文点)使用天体测量仪器观测天体以测定天文经度和纬度,也可测定测站至相邻固定目标的方位角从而确定测站的子午线。

大地天文学的传统课题包括:①测定地面点的天文经度,就是在同一瞬间测定地面上一点与本初子午线上的地方时之差。该点上的时刻可使用经纬仪、中星仪、棱镜等高仪以及照相天顶筒等仪器测定;本初子午线上的地方时则可通过收录无线电时号求得。②测定地面点的天文纬度。这等同于测定地面点的天极高度。该点的纬度可使用带有纬度水准的经纬仪、天顶仪、棱镜等高仪以及照相天顶筒等仪器测定。③地面目标方位角的测定。这等同于确定某天文点的子午线方向。观测恒星,测定其时角,算出它的方位角,然后测定该瞬间恒星与地面目标之间的水平角,从而得到目标的方位角。这些任务都包含对各种误差的分析及对削弱和消除误差的研究。近代已能测定地面点在以地心为原点的三维直角坐标系中的地心直角坐标,用诸如甚长基线干涉测量、激光测距、全球定位系统测量等技术,精度可达几厘米量级。

二 、大地天文学的发展概况

大地天文学是天文学中发展最早的一个分支。公元前3世纪,古希腊天文学家用观测夏至日正午太阳高度的方法测定了子午线的长度。公元8世纪,中国天文学家一行(本名张遂,683~727)等通过观测北极星高度推算出了子午线1°的弧长。元代天文学家郭守敬(1231~1316)组织过全国范围的纬度测量。然而,直到17世纪光学望远镜、测微器与天文钟问世以后,才形成精密的大地天文学。现代大地天文学的测量设备包括天文观测仪器、守时仪器、记时仪器和无线电接收机。 天文观测仪器主要是全能经纬仪,也可用中星仪和棱镜等高仪等。守时仪器已全部采用石英钟。记时仪器用以记录观测恒星的时刻。无线电接收机则用

以收录时号。为提高观测精度和效率,各国都在研制新的观测仪器,例如美国的自动天文定位系统、方位角监测仪,意大利的天顶摄影机等。

三 、天球的基本概念

3.1天球的定义

各个天体同地球上的观测者的距离都不相同。天体和观察者间的距离与观测者随地球在空间移动的距离相比要大得多,人的肉眼分辨不出天体的远近,所以看上去天体似乎都离我们一样远,仿佛散布在以观测者为中心的一个圆球的球面上(站心天球)。实际上我们看到的是天体在这个巨大的圆球的球面上的投影位置,这个圆球就称为天球。

3.2 天球的分类

文学上就将以空间某一点为中心,以无限大为半径,内表面分布着各种各样天体的球面称为天球。天球是研究天体的位置和运动而引进的一个半径为无限大的假想圆球,想象中所有天体都附着在天球表面上。根据所选取的天球中心不同,有站心天球、日心天球、地心天球等。

3.3天球的两个特性

由于天球的半径可视为无穷大,在空间任何有限的距离与天球半径相比,都微小到可以忽略不计。因此天球具有下面两个特性:

1)相距有限距离的所有平行直线,向同一方向延长与天球交于一点。

2)相距有限距离的所有平行平面天球交于同一大圆。

3.4 关于天球的基本知识

观测者所能直接辨别的只是天体的方向。在球面上处理点和弧段的关系,比在空间处理视线方向间的角度要简便得多,在天文学的一些应用中,都用天体投影在天球上的点和点之间的大圆弧段来表示它们之间的位置关系。天球的半径是任意选定的,可以当作数学上的无穷大。

我们站在地球上仰望星空,看到天上的星星好像都离我们一样远。星星就好

像镶嵌在一个圆形天幕上的宝石。实际上星星和我们的距离有远有近,我们看到的是它们在这个巨大的圆球球面上的投影,这个假想的圆球就称为天球,它的半径是无限大。而地球就悬挂在这个天球中央。星星在天空中移动的方向并不是杂乱无章的,而且星座的形状并不会改变。星星从东方的地平线爬上来,爬到最高点(中天),然后往西方沉下去。看起来就像整个天球围绕着地球旋转一样。相信大家都明白,地球并不是宇宙的中心,星体并不会绕着地球转。星体在天空中绕着我们旋转,是因为地球自转而产生的错觉,天球本身是不会移动的。我们身在地球中,并不会感觉自己在转动的,就好像们乘坐火车时看见窗外的景物向后移动,而并不感觉到自己在移动中。

天球是一个直观的假象球,其形成的原因是人的肉眼分辨不出天体的远近。设在地球中心照准空间远近不等的天体,将各天体方向线延长与天球相交的各投影点称为各天体在天球上的位置。显然,就存在有两个或多个天体在天球上的投影位置是重合的。

四 、天球与地球的相关关系

4.1 天球上与地球公转有关的圈、线、点

黄道在天球上的位置较难确定。所谓黄道是指地球绕着太阳运行的公转轨道平面无限扩大与天球相交截出的大圆,它也是地球公转轨道在天球上的投影。地球每年绕太阳运行一周,但在地球上的人们看来,却好像是太阳在天空众星之间绕地球转圈。因此,黄道也就是太阳每年在天球上所作视运动的路线。

黄道面是地球绕太阳系质心运动的平均轨道平面,将这一平面延伸与天球相交的大圈称为黄道;过天球中心作一条直线垂直与黄道面,这条直线与天球相交于K和K′两点,靠近北天极的K点称为北黄极,靠近南天极的K′点称为南黄极。黄道面与赤道面的夹角称为黄赤交角,一般用ε来表示,其值约为23.5。天球上距离黄道90°的两点,即黄道轴与天球相交的两点,称黄极。靠近北天极的一点叫北黄极(通常用K表示),靠近南天极的一点叫南黄极(通常用K′表示)。

二分点和二至点:天球上黄道与赤道相交于和两点,称为二分点,即春分点

和秋分点。在黄道上距春分点和秋分点90的两个点称为二至点,即夏至点和冬至点,其中在赤道以北(最北)的那一点称为夏至点。在赤道以南(最南)的那一点 称为冬至点。

二分圈和二至圈:在天球上通过天极、春分点和秋分点的大圈,称为二分圈。在天球上通过天极、夏至点和冬至点的大圈,称为二至圈。

4.2 天球上与地球自转有关的圈、线、点,我们要经常用到的基本圈、线、点为:

天轴和天极:通过天球中心(这里为测站点)而与地球瞬时自转轴pp′相平行的直线PP′称为天轴,它与天球相交的两点P和P′称为天极。相应地球北极p的一点P称为北天极,相应地球南极p′的一点P′称为南天极。

天顶和天底:测站的瞬时铅垂线ZZ′与天球相交于Z和Z′两点,在观测者头顶上方的Z点称为天顶,与天顶相对的Z′点称为天底。

天球地平面和天球地平圈:通过天球中心而垂直于测站瞬时铅垂线ZZ′的平面ESWN称为天球地平面,它与天球相交的大圈称为天球地平圈。

天球上的主要圈、线、点

天球赤道面和天球赤道:通过天球中心而与天轴PP′垂直的平面EQWQ′称为天球赤道面(简称赤道面),它与天球相交的大圈EQWQ′称为天球赤道(简称赤道)。其中在天球地平面之上的赤道圈上的点Q称为赤道上点;与赤道上点Q相对应的另一点Q′称为赤道下点。

天球子午面和天球子午圈:由测站铅垂线ZZ′和北天极P所决定的平面PZP′Z′N称为天球子午面(或称天文子午面),它与天球相交的大圈称为天球子午圈(或称天文子午圈)。也可以说通过测站天顶Z和北天极P的大圈即为测站的天文子午圈。其中包含天顶Z和赤道上点Q的半圆PZQSP′称为上子午圈,相对的另一半PNQ′Z′P称为下子午圈。

子午线和四方点:天球子午面与天球地平面垂直,它们的交线NS称为子午线。子午线与天球相交于两点,靠近北天极的那一点N称为北点,和它相对的另一点S称为南点。观测者面向北,在右方地平圈上距南北点各90度的E点称为东点,在左方与东点相对称的一点W称为西点。东南西北四个方向点称为四方点。东西两点也是天球赤道圈与天球地平圈的两个交点。

垂直圈和卯酉圈:通过天顶和天底的任意大圈,例如ZbZ′称为垂直圈。其中过东西点的垂直圈称为卯酉圈。

时圈:通过北天极和南天极或包含天轴的任意大圈,例如PbP′称为时圈。 我们在地球上随着地球的自转而不停地绕着地球自转轴由西向东旋转。所以我们相对地看到地球上的日月星辰都像随着天球绕着地球由东向西旋转,每日旋转一周。因而产生天体东升西落的现象。这种直观的由于地球由西向东自转而产生的天球或天体的视运动,称为天球周日视运动或天体周日视运动。

在周日视运动中不变的圈、点为:南北天极、地方性圈、点(如:子午圈、地平圈、天顶、天底、四方点等)。赤道则在赤道面上原位旋转。其他的圈线点则均绕天轴旋转。

五 、天球坐标系

5.1 天球坐标系分类

为了表示天体在天球上的位置和进行天文测量的需要,需在天球上建立球面坐标系。要建立天球坐标系,须首先确定两个基本要素,如图(5-1)所示:

1)基本平面,由天球上某一选定的大圆所确定。大圆称为基圈,基圈的两个几何极之一作为球面坐标系的极。

2)原点,由天球上某一选定的过坐标系极点的大圆与基圈的交点所确定。 天体在天球坐标系中的位置由两个球面坐标标定,如图(5-1)所示:

1)经向坐标,作过该点和坐标系极点的大圆称为副圈(或终圈),从原点到副圈与基圈交点的弧长为经向坐标。

2)纬向坐标,从基圈上起沿终圈到该点的大圆弧长为纬向坐标。天球上任何一点的位置都可以由这两个坐标唯一地确定。这样的球面坐标系是正交坐标系。对于不同的基圈和原点,以及经向坐标所采用的不同量度方式,可以引出不

同的天球坐标系,常用的有地平坐标系、赤道坐标系、黄道坐标系和银道坐标系等。

地平天球坐标系是一种最直观的天球坐标系,和我们日常的天文观测关系最为密切。取测站的地平圈作为基圈(横坐标圈),子午圈作为次圈(纵坐标圈),南点为原点的球面坐标系,称为地平坐标系。它用地平纬度(高度)h或天顶距Z和地平经度(方位角)A来表示天体在天球上的位置。

地平高度h和天顶距z:过天体ζ作一个垂直圈,设它与地平圈相交于A点。

从A点沿垂直圈量至天体ζ的弧距Aζ称为天体的地平高度、或地平纬度、或垂直角,常用h表示。h从地平圈起算,向天顶量为正,向天底量为负,其值由0到±90。

由天顶至天体的弧距离Zζ,或在天体垂直面上的平面角∠ZOζ,称为天体的天顶距,一般以z表示,其取值范围为0到180恒为正。

天顶距与地平高度的关系是:

地平方位角A:通过天体的垂直面与测站的子午面所夹的二面角∠SZA,或在天球地平面上的平面角∠SOA,或大圆弧距SA称为天体的地平经度(方位角),用A表示。

地平方位角的量算方法:由南点S起算,沿地平圈向西量,取值范围为0到360恒为正;或者由南点S起算,分别沿地平圈向东、和向西量,且约定向西量为正,向东量为负,其值由0到±180。

时角坐标系的基圈是赤道,次圈是子午圈,原点是上点Q(即赤道与子午圈的交点);此坐标系用赤纬和时角来表示天体在天球上的位置。

赤纬δ:通过天体ζ作一时圈,设它与赤道交于点T。由T点沿时圈量至天体ζ的弧距Tζ,称为天体的赤纬,以δ表示。

赤纬的量度方法:从赤道起算,沿时圈向北天极量为正,向南天极量为负。其值范围:0到±90 。

时角t:通过天体的时圈面与测站的子午面所夹的二面角∠QPT、或大圆弧距QT称为天体的时角,用t表示。

时角的量算方法:由上点Q起算沿赤道向西量,取值范围为:0到360,或0到24小时;或者由上点Q起算,分别沿赤道向东西量,由0到±180,或0到±12小时,且约定向西量为正,向东量为负。

赤纬与周日视运动、测站无关,时角与周日视运动、测站有关有。测量时必须说明时刻。否则毫无意义。

5.1.3 赤道天球坐标系

赤道坐标系的基圈是赤道,次圈是过春分点的极分圈,原点为春分点γ。 此坐标系用赤纬δ和赤经α来表示天体在天球上的位置。

赤纬δ:同时角坐标系。

赤经α:过春分点作一极分圈(即过春分点的时圈),并通过天体ζ作一时圈,设它与赤道交于T点。则天体ζ的时圈面与极分圈面

所夹的二面角∠γPT,或大圆弧距γT称为天体的赤经,以α表示。

赤经的量度方法:从春分点γ起算,沿赤道按反时针方向(即与周日视运动相反的方向)计量,0到24小时。

5.1.4 黄道天球坐标系:

黄道坐标系的基圈是黄道,次圈为过春分点和黄极黄经圈,原点为春分点γ; 它用黄纬β和黄经l来表示天体在天球上的位置。

黄纬β:通过天体ζ作一黄经圈,设它与黄道交于R点。由R点沿黄经圈量至天体ζ的弧距Rζ称为天体的黄纬,以β表示。

黄纬的度量方法:从黄道起算,沿黄经圈向北黄极量为正,向南黄极量为负。其值:0到±90。

黄经λ:过春分点作一黄经圈(即过春分点和黄极的大圈),则天体ζ的黄经圈面与过春分点的黄经圈面所夹的二面角∠γKR,或大圆弧距γR称为天体的黄经,以λ或l表示。

黄经的量度方法:从春分点γ起算,沿黄道按反时针方向计量,0到±360。

5.2 天球坐标系之间的转换

天球坐标系是天文学中描述天空中物体位置的坐标系。类似于我们在地球表面上用到的地理坐标系。天球坐标系随着投影到天球上的坐标格网的不同而不同,沿着大圆将天空分成两个相等的半球的平面称为基础平面,而这种坐标系仅

仅会因为基本面的不同而不同。每个坐标系的名字是根据基本面的选择而定的。

5.2.1 天文坐标与天球坐标之间的关系

测站的天文纬度定义为测站的瞬时铅垂线与地球赤道面之间的夹角;测站的地球天文子午面定义为测站的瞬时铅垂线和地球瞬时北极所决定的平面;而测站的天文经度定义为格林尼治天文台的地球天文子午面与测站的地球天文子午面之间的二面角。另外,测站的地球天文子午面投影到天球上就是测站的天球子午面,而地球赤道面与天球赤道面平行(或在天球上重合)。

天球坐标与天文坐标间存在两个重要关系:

1)测站的天文纬度等于北天极的地平高度,也等于测站天顶的赤纬,即:

Φ = z + δ = δz

2)地面A、B两地同时观测同一天体的时角之差(tA - tB),等于A、B两地的天文经度之差(λA - λB),即:

A - λB = tA - tB

显然,若测站与各林尼治天文台同步观测一天体,则有λA – λG = tA – tG ,但λG = 0,故有:λA = tA – tG

由此可知,地面上任意一测站的天文经度,等于测站与各林尼治天文台在同一瞬间观测同一天体的时角之差。

5.2.2 地平坐标与时角坐标之间的关系

由天顶Z、北天极P和天体ζ为顶点构成的球面三角形称为定位三角形(也称天文三角形),局部图见图(5-5)。

在此定位三角形中,各边、角的数值如下:

= 900 – δ,

而∠PζZ = q 一般称为星位角。

根据球面三角形的边余弦公式可得:

根据正弦公式可得:

根据五元素公式可得:

及关系式:

因此,天体的地平坐标z、A和时角坐标t、δ与测站的天文坐标φ存在以上关系。 = 900 – φ, = z ∠ζPZ = t, ∠ζZP = 1800 - A

5.2.3 天球直角坐标系及其转换

地平直角坐标系:坐标原点在天球中心,Z轴指向天顶Z,X轴指向地平坐标系的原点—南点S,由于地平方位角是由南点顺时针量起(从Z轴往下看),因此Y轴应该在X轴的右侧指向西点W。地平直角坐标系形成左手系。天体的直角坐标与其地平坐标的关系为:

时角直角坐标系:坐标原点在天球中心,Z轴指向北天极P, X轴指向时角坐标系的原点—赤道上点Q,由于时角是由上点Q顺时针量起(从Z轴往下看),因此Y轴应该也在X轴的右侧指向西点W。时角直角坐标系形成左手系,天体的直角坐标与其时角坐标的关系为:

可见时角直角坐标系与地平直角坐标系有共同的Y轴,两个坐标系X轴或Z轴之间的夹角为测站的天文余纬度,即:900 – φ。

赤道直角坐标系:坐标原点在天球中心,Z轴指向北天极P,X轴指向时角坐标系的原点—春分点γ,由于赤经是由春分点γ逆时针量起(从Z轴往下看),因此Y轴应该在X轴的左侧90。赤道直角坐标系形成右手系,天体的直角坐标与其赤道坐标的关系为:

可见赤道直角坐标系与时角直角坐标系有共同的Z轴,两个坐标系X轴或Y轴之间的夹角为春分点的时角tr ,即地方恒星时S。

黄道直角坐标系:坐标原点在天球中心,Z轴指向北黄极K,X轴指向黄道坐标系的原点—春分点γ,由于黄经是由春分点γ逆时针量起(从Z轴往下看),因此Y轴应该在X轴的左侧90。黄道直角坐标系形成右手系,天体的直角坐标与其黄道坐标的关系为:

可见黄道直角坐标系与赤道直角坐标系有共同的X轴,两个坐标系Z轴或Y轴之间的夹角为黄赤交角ε。

根据前面讲述的坐标旋转矩阵方法,可导出天球坐标系之间的转换关系式。 时角直角坐标与地平直角坐标之间的关系:

赤道直角坐标与时角直角坐标之间的关系:

黄道直角坐标与赤道直角坐标之间的关系:

可见只要知道测站的瞬时天文纬度φ和观测瞬间的地方真恒星时s,就可将观测天体的地平坐标h和A转换成赤道坐标α和δ,反之亦然。

六 、大地天文学的方法及应用

大地天文学的主要任务是研究精确测定天文点的天文经纬度、方位角以及地方恒星时的理论和方法。已实现天文定位的地面点叫天文点。定位方法都是在测出某些天体的某些量(如天顶距z、高度h、方位角A或天体通过特定平面的时刻T) 后求解天文三角形。测定纬度的方法常用天顶距差法(或称太尔各特法)和等高法。无线电时号法与中天法专门用于测定经度。多星等高法则可同时测定经度与纬度。恒星时角法用于测定方位角。这些测定法在军事上得到广泛应用。军用地图的编绘、火炮射击目标的迅速定位和导弹等武器发射的准确性等,都需要用到它们。大地网的定向、测角的验核、部队战斗队形各要素的大地联测和部队战斗行动的测绘保障等工作,也都离不开天文定位资料。工程建设、海洋开发、国土整治、科学研究、军事测绘都需要进行大地网的布设。天文经纬度与大地测量结果相比对,可获得点位的垂线偏差,这是研究地球形状和大地水准面结构的必要参数。测量天文方位角可确定地面子午线的方向。天文方位角还可用以推算大

地方位角,从而控制大地网中的累积误差。大地天文学的测量精度通常在0.5″以下,固定的天文仪器则可达 0.05″ 左右。在保障军事行动的近似测量中,也可使用中、低精度的经纬仪,天文钟则可用精密秒表代替。

参考文献

[1] 苏宜编著。天文学新概论[M]。 华中科技大学出版社, 2005

[2] 刘学富主编。基础天文学[M]。 高等教育出版社, 2004

[3] 朱慈墭[编著]。天文学教程[M]。 高等教育出版社, 2003

[4] 胡中为编著。普通天文学[M]。 南京大学出版社, 2003

[5] (法)G.伏古勒尔著,李珩译。天文学简史[M]。 广西师范大学出版社, 2003

[6] 余明主编。简明天文学教程[M]。 科学出版社, 2001

[7] 刘林著。航天器轨道理论[M]。 国防工业出版社, 2000

[8] 黄润乾著。恒星物理[M]。 科学出版社, 1998

天文学论文 篇4

摘要:天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。它同数学、物理、化学、生物、地学同为六大基础学科。天文学家观测从行星、恒星、星系等各种天体来的辐射,小到星际的分子,大到整个宇宙。天文学家测量它们的位置,计算它们的轨道,研究它们的诞生,演化和死亡,探讨它们的能源机制。由于科技的不断发展,人们对天文学的定义,研究对象,研究范畴,学科分支,论研究等方面都取得了突破性的进展。天文学正朝着高、精、尖的方向发展。我们期待着天文学的进一步发展为科学事业和人们的社会生活造福。

关键字:天文学,研究对象,研究理论,天文学四大发现,矮行星,中子星,黑洞

通过听天文学基础的课使我对天文学有了一定的了解。天文学是研究天体、宇宙的结构和发展的自然科学,内容包括天体的构造、性质和运行规律等。人类生在天地之间,从很早的年代就在探索宇宙的奥秘,因此天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。它同数学、物理、化学、生物、地学同为六大基础学科。天文学主要通过观测天体发射到地球的辐射,发现并测量它们的位置、探索它们的运动规律、研究它们的物理性质、化学组成、内部结构、能量来源及其演化规律。随着人类社会的发展,天文学的研究对象从太阳系发展到整个宇宙。现在天文学按研究方法分类已形成天体测量学、天体力学和天体物理学三大分支学科。按观测手段分类已形成光学天文学、射电天文学和空间天文学几个分支学科。“几乎所有的自然科学分支研究的都是地球上的现象,只有天文学从它诞生的那一天起就和我们头顶上可望而不可及的灿烂的星空联系在一起。天文学家观测从行星、恒星、星系等各种天体来的辐射,小到星际的分子,大到整个宇宙。天文学家测量它们的位置,计算它们的轨道,研究它们的诞生,演化和死亡,探讨它们的能源机制。

自古以来,人类一直对恒星和行星十分感兴趣。古代的天文学家仅仅依靠肉眼观察天空,1608年,人们发明了望远镜,此后,天文学家就能够更清楚的观察恒星和行星了。意大利科学家伽利略,就是最早使用望远镜研究太空的人之一。今天天文学家使用许多不同类型的望远镜来收集宇宙的信息。有些望远镜可以收集到来自遥远天体的微弱亮光,如X射线。绝大多数望远镜是安放在地球上的,但也有些望远镜被放置在太空中,沿着轨道运转,如哈勃太空望远镜。现在,天文学家还能够通过发射的航天探测器来了解某些太空信息。天文学的研究范畴和天文的概念从古至今不断发展。在古代,人们只能用肉眼观测天体。2世纪时,古希腊天文学家托勒密提出的地心说统治了西方对宇宙的认识长达1000多年。直到16世纪,波兰天文学家哥白尼才提出了新的宇宙体系的理论——日心说。到了1610年,意大利天文学家伽利略独立制造折射望远镜,首次以望远镜看到了太阳黑子、月球表面和一些行星的表面和盈亏。在同时代,牛顿创立牛顿力学使天文学出现了一个新的分支学科天体力学。天体力学诞生使天文学从单纯描述天体的几何关系和运动状况进入到研究天体之间的相互作用和造成天体运动的原因的新阶段,在天文学的发展历史上,是一次巨大的飞跃。

19世纪中叶天体摄影和分光技术的发明,使天文学家可以进一步深入地研究天体的物理性质、化学组成、运动状态和演化规律,从而更加深入到问题本质,从而也产生了一门新的分支学科天体物理学。这又是天文学的一次重大飞跃。20世纪50年代,射电望远镜开始应用。到了20世纪60年代,取得了称为“天文学四大发现”的成就:微波背景辐射、脉冲星、类星体和星际有机分子。而与此同时,人类也突破了地球束缚,可到天空中观测天体。除可见光外,天体的紫外线、红外线、无线电波、X射线、γ射线等都能观测到了。这些使得空间天文学得到巨大发展,也对现代天文学成就产生很大影响。

随着天文学的发展,人类的探测范围到达了距地球约100亿光年的距离,根据尺度和规模,天文学的研究对象可以分为包括行星系中的行星、围绕行星旋转的卫星和大量的小天体,如小行星、彗星、流星体以及行星际物质等。太阳系是目前能够直接观测的唯一的行星系。但是宇宙中存在着无数像太阳系这样的行星系统。 现在人们已经观测到了亿万个恒星,太阳只是无数恒星中很普通的一颗。

人类所处的太阳系只是处于由无数恒星组成的银河系中的一隅。而银河系也只是一个普通的星系,除了银河系以外,还存在着许多的河外星系。星系又进一步组成了更大的天体系统,星系群、星系团和超星系团。

一些天文学家提出了比超星系团还高一级的总星系。按照现在的理解,总星系就是目前人类所能观测到的宇宙的范围,半径超过了100亿光年。

在天文学研究中最热门、也是最难令人信服的课题之一就是关于宇宙起源与未来的研究。对于宇宙起源问题的理论层出不穷,其中最具代表性,影响最大,也是最多人支持的的就是1948年美国科学家伽莫夫等人提出的大爆炸理论。根据现在不断完善的这个理论,宇宙是在约137亿年前的一次猛烈的爆发中诞生的。然后宇宙不断地膨胀,温度不断地降低,产生各种基本粒子。随着宇宙温度进一步下降,物质由于引力作用开始塌缩,逐级成团。在宇宙年龄约10年时星系开始形成,并逐渐演化为今天的样子。

天文学研究的对象有极大的尺度,极长的时间,极端的物理特性,因而地面试验室很难模拟。因此天文学的研究方法主要依靠观测。由于地球大气对紫外辐射、X射线和γ射线不透明,因此许多太空探测方法和手段相继出现,例如气球、火箭、人造卫星和航天器等。

天文学的理论常常由于观测信息的不足,天文学家经常会提出许多假

说来解释一些天文现象。然后再根据新的观测结果,对原来的理论进行修改或者用新的理论来代替。这也是天文学不同于其他许多自然科学的地方。 天文学的不断发展使得人们对行星以及宇宙中的天体有了更加精确的定义。

在2006年8月24日在捷克首都布拉格举行的第26届国际天文学大会中确认了矮行星的称谓与定义,决议文对矮行星的描述如下:1、以轨道绕着太阳的天体;

2、有足够的质量以自身的重力克服固体应力,使其达到流体静力学平衡的形状(几乎是球形的);

3、未能清除在近似轨道上的其它小天体;

4、不是行星的卫星,或是其它非恒星的天体。

在行星的基本定义上,科学家们大致上认同这样的说法:直接围绕恒星运行的天体,由于自身重力作用具有球状外形,但是也不能大到足够让其内部发生核子融合。矮行星的家族成员有冥王星、卡戎星、齐娜星、谷神星。矮行的基本特点是外幔和表面由冰冻的水和气体元素组成的一些低熔点的化合物组成,有的其中混杂着的一些由重元素化合物组成的岩石质的矿物质,厚度占星体半径的比例相对较大,但所占星体相对质量却不大,内部可能有一个岩石质占主要物质组成部分的核心,占星体质量的绝大部分,星体体积和总质量不大,平均密度较小,一些大行星的卫星也具有这种类似冰矮星的结构。

中子星(neutron star)又名波霎。它是恒星演化到末期,经由重力崩溃发生超新星爆炸之后,可能成为的少数终点之一。简而言之,即质量没有达到可以形成黑洞的恒星在寿命终结时塌缩形成的一种介于恒星和黑洞的星体,其密度比地球上任何物质密度大相当多倍。中子星的表面温度约为一百一十万度,辐射χ射线、γ射线和和可见光。中子星有极强的磁场,它使中子星沿着磁极方向发射束状无线电波(射电波)。中子星自转非常快,能达到每秒几百转。中子星的磁极与两极通常不吻合,所以如果中子星的磁极恰好朝向地球,那么随着自转,中子星发出的射电波束就会像一座旋转的灯塔那样一次次扫过地球,形成射电脉冲。人们又称这样的天体为“脉冲星”。

天文学家称这种由于恒星死亡形成的天体为恒星级黑洞。一般认为,宇宙中的大多数黑洞是由恒星坍缩形成的。此外,在许多恒星系的中心也有一个因引力坍缩而形成的超大质量黑洞,比如在类星体星系的中心。在宇宙诞生初期可能曾经形成过很多微型黑洞(太初黑洞),这些黑洞的体积很小,质量相当于一座大山。

黑洞本身不可见,但可以用至少两种方法检测出它的存在。当一个黑洞吸引尘埃、气体或恒星时,它的强大引力会把这些物质撕碎成原子微粒,原子微粒会从黑洞的边缘沿螺旋线坠向中心,速度会越来越快,直至达到每秒九百多公里。当物体被黑洞吞没时,会因为互相碰撞而使温度上升到几百万度,并发出χ射线和γ射线。在宇宙中,只有黑洞能使物体在密集的轨道上加速到如此高的速度;也只有黑洞才会以这种方式发射χ射线和γ射线。 任何物质或辐射到达黑洞边缘,越过它的视界就永远消失了。在黑洞的奇点附近,现有的任何物理定律都是不适用的。黑洞的奇点和我们现已认识的宇宙中的所有物质状态截然不同。到目前为止,还没有任何科学方法能用来测量黑洞。现在我们说找到了一个黑洞都是通过间接途径推算出来的。

通过学习天文学基础这门课程,我对天文学的定义、研究方向、研究领域、研究理论以及矮行星和中子星等重要的天体有了系统的了解。它也丰富了我的知识体系,拓宽了我的知识面。我期待天文学取得更大的进展,也期待我国的科学事业的发展越来越好。

附录:

参考文献:

[1]:《基础天文学》;

[2]:《天文学教程》。

天文学论文 篇5

中国古代的天文和历法,具有政治象征意义。颁布历法,标明正朔之所在,是政权正当性的表现。历法又与农时节气密不可分,是非常实用的知识。而要调整历法,就必须观察天文。中国古代是阴阳合历,既要考虑月相周期,又要考虑二十四节气和四季的变化,必须保持每隔一段时间修订历法。唐朝有天文学家、数学家僧一行借鉴印度历法编撰《大衍历》;元代有郭守敬吸收回回历法,制作《授时历》。

明崇祯二年 (1629 年 ),钦天监据大统历、回回历推算日食皆不验,曾向利玛窦学习历法天文的徐光启,以新法推算,预测“五月初一日,顺天府日食,二分有余,不及五刻”。结果获得验证。说明又到修订历法的当口了。

礼部乃奏请开局修历,礼部侍郎徐光启领衔,耶稣会士龙华民、邓玉函、罗雅谷、汤若望等,先后被聘入局。其实,早在利玛窦在北京时,朝廷已因大统历预报天象屡次失误而持续多年议论改历。加之弘治以来逐渐放开“私习天文”之禁,这就为西洋天文历法技术提供了立足机会。

利玛窦曾自荐修历,未被理会。但他并不灰心,而是强烈要求罗马派遣精通天文学的耶稣会士来中国,阳玛诺、熊三拔、邓玉函等都可能是因此来到中国的。来华耶稣会士成为一个天文学造诣很高的群体,令与他们接触的不少中国官员倾倒,以致多次主动上书,推荐耶稣会士参与修历。

1629 年这次钦天监官员用郭守敬的方法推算日食,再次失误,才出现中西学者联合修撰新历的局面,并于1634 年撰成《崇祯历书》。《崇祯历书》修成后,又经过8 次实测,以及与保守派的数次较量,崇祯确信西方天文学方法的优越,决定颁行。可惜,此时遭遇易代鼎革之变,竟未克进行。

清军进京后,“奉天承运”,迫切需要颁布新历,以明正朔。汤若望将《崇祯历书》作了删改、补充和修订后,自费刻印献上,改名为《西洋新法历书》,给顺治皇帝献上一份厚礼,于是清廷即刻颁行。康熙时去“西洋”二字,改题《新法历书》。

《崇祯历书》涉及到西方天文学理论,行星运行观测和计算的数据表格、必备的天文数学知识、天文仪器的制造与使用以及中西度量单位的换算。其理论部分《法原》总篇幅的 1/3,系统介绍西方古典天文学理论和方法,包括日、月、五星、恒星的运行规律,球面天文学原理,着重阐述托勒密、哥白尼、第谷 3 人的工作,大体未超出开普勒行星运动三定律之前的水平,但也有少数更先进的内容。

《崇祯历书》所参考的天文学著作,已明确考证出的以17 世纪初期的作品居多,而最晚近的是1622 年出版的作品。西方几种主要宇宙模式理论,明末都已传入中国,包括亚里士多德的“水晶球”体系、托勒密的行星系说、第谷宇宙模型、哥白尼的日心地动说。

关于哥白尼的日心地动说,在 1760 年耶稣会士蒋友仁向乾隆进献《坤舆全图》前,就已经引用和介绍到中国,但蒋友仁的《坤舆全图》明确宣称托勒密体系是错误的,第谷的理论不如哥白尼的正确。与此不同的是,《崇祯历书》虽然引用了哥白尼《天体运行论》中 27 项观测记录中的 17 项,对《天体运行论》中的有些章节甚至直接翻译,对其日心地动说的重要内容也有所披露,但对日心说却持否定态度,认为哥白尼用来论证地动的理由,不具说服力。

哥白尼1543 年发表《天体运行论》,其宇宙观从学理体系说虽属先进,但直到 17 世纪都还没有取得令人信服的优势。特别是哥白尼在仪器制造、观测技术和精度方面并不出众,他的日心说对历法制订影响不大。与观测精准的第谷学说相比,哥白尼学说对于修历缺乏实用性。这不仅说明了国人选择西学中的实用主义倾向,为蒋友仁润色文字的钱大昕和作序的阮元都对哥白尼学说持否定态度;而且也说明中国学者将科学修历的技术实践,转向探索自然奥秘的天文学理论兴趣,仍然存在一道鸿沟,后者必须有更多的社会制度条件加以配合。

天文学论文 篇6

摘要:长城是中国古代重要的边防工程,在两千多年长城的修建过程中,天文科技发挥着重要的指导作用。在本文的论述中,笔者从长城修建的天文学背景出发,将秦、明时期的长城形体分别与北斗七星和银河进行比对,揭示了一系列长城在设计过程中可能蕴含的天文特征,这些特征充分反映出中国传统宇宙现在建筑工程方面的深刻影响。

关键词:长城;天文学;星宿;银河

中国长城是人类文明史上最伟大的建筑工程之一,自春秋战国至明清时期在中国北方疆域发挥着重要的战略防御功能。历史上对长城有两次大规模的修筑时期,一是秦统一后连各国长城为一体所形成的秦长城;一是明朝在原长城基础上重新规划后修筑的如今之格局的明万里长城。历代长城工程之浩繁,气势之雄伟,堪称世界奇迹。

长城的防御作用是毋庸置疑的,但从战略发展角度看,长城位于崇山峻岭及不毛之地,仅仅出于防御的需要来修建这样的庞然大物的理由似乎过于单一。翻开历史志书就会发现,中国历代城池、建筑在动土开工前无不仰观天文、考察星象后进行全方位的规划布局,使城市、建筑与天体之间形成某种特殊关联。长城是历代耗费巨资建造的重大的建筑工程,它在建造之前是否考察天象并按照天体特征进行规划与布局呢?长城还有其他的天文特征么?文章将做如下探讨。

一、长城修建的天文学背景

中国人对天象的观察由来已久,人们在天文观测中了解了星辰起落、日月阴晴圆缺的奥秘,揭示了宇宙的一般运行规律,建立了指导日常生活的天文历法。我国古代有世界上最丰富、最系统的天文观测记录。五帝之一的黄帝依靠对天象的观察确定了阴阳、五行、十方和十二宫完整的天文体系,并在公元前2637年确定了中国历法的开端,这些天文成就奠定了他崛起中原号令天下的基础。商代甲骨文记录着世界上最早的日食、月食和新星,并已采用干支纪年法。《周礼》对天体星象亦有记载,分设天、地、春、夏、秋、冬六官。西周时我国已用二十八星宿划分周天。春秋时期的星官们创立“上天变异,州国受殃”说法,以天空中的星象变化来预测不同地区将要发生的吉、凶、祸、福,将各州、国与星空的区域互相匹配对应形成分野。其所载“保章氏”:“以星土辨九州岛之地,所封封域皆有分星,以观妖祥”即按分野来预卜各地吉凶。再如《论衡变虚篇》中“荧惑守心。荧惑,天罚也;心,宋分野也,祸当君”亦提到“宋”分野。《晋书天文志》载诸侯国分野如下表:

这些将天文与各州县祸福相关联的做法在历代政策管理中起着重要的指导作用。河南马王堆三号汉墓出土的公元前170年左右的帛书《五星占》载有公元前246年至前177年间土星、金星、木星的空间位置以及金星的会合周期,充分反映了秦汉时期高度发达的天文观测水平。

自古以来,那些掌握天文科技的星官们成为历代政治中重要的决策者和参政者。考察天象并遵照天象旨意行事不但是中国传统文化中最重要的一部分,还关系着人们对日常生活的安排,甚至左右着国家领导对重大事务的决策。“观天象”成为古人作出重大决定时必须例行的公事。如古人行军打仗前往往用天象预测吉凶后方才出军;建造建筑前亦要按天文现象来布局或决策动土日期。至秦汉时期,观天之风更加弥漫,最具有参考价值的史实书籍《史记》中多次提到天象与祸福、行军等重大事件相关联的事实,为便于观察天象和有效地将天文原理加以利用,与之相关的观天建筑便应运而生。

中国古代至迟在周代以前形成了以北极星(帝星)为中心,四周三垣、四象、二十八星宿相环绕的古代天宫系统,这个系统深深地影响了历代王室的营国计划。春秋时期各国都城建筑布局多以“象天”为指导思想,其都城形象多反映以帝星为中心的天体系统。秦人发展了“象天法地”和“象天立宫”的思想,使城市布局真正反映了上天的宫阙形态。经学者实地调研发现:秦朝曾修建数量甚众的“完全式全天星台,这些星台分布面积甚广,遍及甘肃、陕西、山西、内蒙等多个省区,反映出秦长城修建时观天现象的普遍性。基于以上背景笔者认为,长城的大规模修建正是在宫殿“象天法地”、民间“观星”与“星运”说极为昌盛的秦朝时期,为强化皇权及满足皇帝对国家长久统治的需求,在秦长城修建过程中,极有可能将“星象”文化融入到长城的建设中。至明朝初期,天文科技已经相当发达,与天文相关的数学、物理学、堪舆学成为社会重要的科技支柱,明长城的修建具备着更加雄厚的天文学和科技基础。

二、秦长城天文学特征设想

1、秦长城用来观测天文

秦长城大多在甘肃、宁夏、陕西与沿北岸边界一带,经历了自秦厉公至秦统一前修建的长城和统一后秦始皇命蒙恬将战国诸侯国长城相接连形成万里长城的两个历史时期。关于秦河西长城,据《史记秦本纪》载,厉公“十六年,堑河旁。以兵二万伐大荔,取其王城。……简公六年,堑洛。城重泉”。秦昭王长城见《史记匈奴列传》:“秦昭王时,……筑长城以拒胡。”秦统一后将北部长城连接起来,形成一道天然屏障。

秦长城兼有天文台的观测功能。天文台一般具有两大功能,一是祭天,二是观象,中国早期的高台建筑都具有观象性质。长城是高台建筑,它所包括的关城、城墙、墙台、敌台、烟墩、营、寨和城堡等均具有高空望功能,可以作为观察天文现象的场所。长城每隔一段距离便设置相应的关城、营寨、堡寨等,这些为那些时刻准备出征或等待敌情的决策者们提供了观察星象变化的绝佳场所。据《全天星台遗址及其源流考(考证分册)》记载:“秦统一之初与后期,置星、祭星之制大变,全国郡、县、军城、亭障乃至长城遍置星台。郡、县多置心宿。军城、亭障多置天枪、平星,角宿台也较普遍,龙文化更进一步体现在星台文化中”。可见在长城的各个区域“遍置星台”已成为秦王朝极为普遍的事情。由此可知,在战争频繁的秦朝,长城不但承担着重要的防御功能,还为决策者们提供观察星象以对重大事物做出重要决策的场所,同时兼具举行祭天、祭星、祈神等宗教活动场所的功能。

2、秦长城象北斗而建

体现秦长城星台文化较突出的一段为临洮与上郡所在的秦南段长城(秦上郡塞)。为进一步了解秦长城可能存在的天文内涵,笔者将南段长城与历代星图作了详细对比。在对比中笔者发现,秦南段长城与咸阳城、渭水三者之间形成了美妙的天宫图:南段长城极有可能模拟北斗七星之形与位置建造,咸阳城正是帝星所在,而渭水则代表了银河(见图1)。秦长城、咸阳、渭水三位一体确立了北斗星、帝星与银河的相对位置,它们共同营造了北天极区最完美的天宫图,而地上的郡、县或星台也可能与天体星辰相对位,共同完善着这幅巨大的天宫图的其他部位。(见图1与图2)

秦南段长城原本只有上郡这一段(原称上郡塞),秦统一后增加了斗形部分,使得南段长城从形体上满足了北斗形。从司马迁《史记》中描述秦皇陵“上具天文,下具地理”便知秦始皇十分重视天象,他既然可以动用数以百万计的人力打造他死后的人间天堂,也可以在他的国土中创造现世中的天上宫阙。

(1)成阳城象帝居,渭水象天汉

咸阳城的规划是法天象地的结果。秦王朝强大后,咸阳城成为秦朝经济、政治和文化中心。为标榜前所未有的帝王成就,秦始皇将自己比拟为不可一世的玉皇大帝,在总结并继承前人经验的基础上,将咸阳城用“象天法地”手法重新规划和调整,使咸阳城的整体布局与天象呈现一一对应关系。据《史记秦始皇本纪》载,秦始皇建咸阳“为复道,自阿房渡渭,属之咸阳,以象天极阁道绝汉抵营室也”。《三辅黄图》亦描绘秦始皇“筑咸阳宫,因北陵营殿,端门四达,以则紫宫,象帝居。渭水贯都,以象天汉;横桥南渡,以法牵牛”。文字中的“紫宫”即紫微垣,象征天帝居所。咸阳自营建之初象“帝居”而建,并以其为中心,各宫殿环列周围,形成拱卫之势。渭水则被视为“天汉”即银河。

秦始皇建宫殿“象天极”的手法不仅体现在咸阳城,公元前220年秦始皇“作信宫,已而更命信宫为极庙,象天极”;阿房宫也营造了非常完美的天官体系:“表山南之巅以为阙,并为复道,自阿房宫渡渭,属之咸阳,以象天极绝汉抵营室也”,表明咸阳象征北天极的北极星,阿房宫象征营室星,咸阳宫与阿房宫之间的复道,象征天桥。由此可知,秦始皇在国土规划中将城市、河流作为基本要素与天体星座相对应:咸阳以“帝居”身份建造,渭水象征银河,阿房宫为营室星,三者相联系确立了完美的人间天宫图。秦朝的这种做法深刻影响了汉长安的规划布局,汉承秦制,在建设工程方面“非壮丽无以重威”。根据《三辅黄图》记载,汉长安“城南为南斗形,城北为北斗形,至今人呼京城为斗城是也”。

(2)北斗为帝车

为使“象天极”的宏伟计划得以呼应,秦咸阳将周边更大的宏观地域纳入到整个城市的规划范围内。秦始皇以咸阳为中心修建了二百七十多个宫观,并通过复道、甬道将这些宫殿聚集在“天极”咸阳城周围,犹如众星拱极一般,突出了帝都成阳的核心地位。而秦南段长城模拟北斗星形态和位置而建,最终成为北斗星的象征。

《史记天官书》说:“北斗七星,所谓‘旋、玑、玉衡、以齐七政’。……斗为帝车,运于中央,临制四乡。分阴阳,建四时,均五行,移节度,定诸纪,皆系于斗。”《尚书纬》认为:“七星在人为七瑞。北斗居天之中,当昆仑之上,运转所指,随二十四气,正十二辰,建十二月,又州国分野、年命,莫不政之,故为七政。”《甘石星经》:“北斗星谓之七政,天之诸侯,亦为帝车。”《冠子》记载:“斗杓东指,天下皆春;斗杓南指,天下皆夏;斗杓西指,天下皆秋;斗杓北指,天下皆冬。”由此可见,北斗七星不但是协助君王治理天下的“齐政”法宝和辅助辨方正位的重要星辰,还是天帝巡游各地的帝车,象征君王巡游天下所乘坐的御辇,其重要性可见一斑。秦始皇这个自视功高堪比玉皇大帝的一代帝王,在咸阳、渭水已经具备的前提下,只要将长城之形略作改动便可以使自己居住的咸阳稳如天宫,而自己则足以比拟伟大的天帝之布政与施德,何乐而不为呢?

在将长城成功地对比北斗星位置建造之后,秦南段长城、咸阳城与渭水三者形成的空间关系与当时北斗七星、帝星、银河在天体宫阙的位置相一致(见图3),三者正反映出秦始皇将自己比拟为坐守帝居(咸阳)并可随时乘坐帝车(南段长城)在银河星汉遨游的玉皇大帝之本身。

3、秦长城修建的科技背景

前文已经阐述,秦长城修建前秦朝的天文学已十分发达,这为秦长城进行天文布局提供了良好的基础。与此同时,秦朝高超的大地测量水平、建筑施工技术和数学运算能力是确保长城与天体相对位的技术条件。我国大地测量技术的历史很早,相传大禹时期已开始使用“准、绳、矩”等原始工具进行测量,春秋以后水准测量已较为普遍。战国时期的漳水渠、都江堰、郑国渠能够建成,表明当时的测量技术和建筑施工已具有相当高的水平。数学测算方面也有很大进步,《九章算术》中记载了勾股定理和立表法、连索法、参直法等先进的测量方法。在堪舆方面,秦朝朱仙桃所著的《搜山记》,是至今流传下来的最早的风水学著作。可见,秦朝修建长城时具备良好的技术基础,它们保证了长城得以顺利的进行天文规划布局和实际工程建造的条件。

三、明长城天文特征的可能性

明朝为加强北方边防于洪武元年(1368年)开始修建长城,一直持续了近两百年。虽然修建之初存有一些北魏、北齐、隋长城,但大多残损严重且不可用。为实现宏伟的防御体系,明帝王重新设定了长城的走向,向东将长城延长至鸭绿江畔的辽东境内,向西修建至甘肃的嘉峪关。明朝的天文学十分发达,明初营建的南京故宫、北京紫禁城、北京十三陵均依天象布局,紫禁城以模拟天体宫阙布局和命名而著称于世。作为国内最重要的建筑工程,明长城既然经历了重新规划,就有可能将之与天象相联系以达到最佳的防御与象征功能。

1、明长城沿银河走向布局

有国外学者研究认为明长城蕴含了中国“龙”的概念,除了在文化上将长城比拟为“巨龙”外,还在形体上与龙的体征相契合,如山海关为龙头,嘉峪关为龙尾,长城重镇、军堡则对应龙身其他部位,以展示出中国龙应有的特征。根据多方对比分析笔者认为:明长城可能与银河系建立了多种关联,具体表现为:

第一,从象征主义出发,明长城与银河具有相似的防御功能。

明长城与银河是人间与天上两道不可逾越的屏障,具有阻隔之功能。长城用以防御北方民族入侵,已成为一道人工防御体系;银河被认为是天空中无法逾越的天然屏障,其将天体星空划分两大部分,彼此之间不能逾越,是阻隔彼此相爱的牛郎与织女的天堑。《诗小雅大东》“维天有汉,监亦有光。跛彼织女,终日七襄。虽则七襄,不成报章。皖彼牵牛,不以服箱”,《诗经周南汉广》中述“汉有游女,不可求思”,及明代孙仁孺的《东郭记钻穴隙》:“到而今可是难依傍,只落得一水银河隔两厢”,均表达了银河作为屏障让人求之不得的心理。基于对银河“阻隔”含义的深刻理解,明帝王极有可能将长城的防御功能比喻为银河的阻隔作用来设计建造,明长城因此在文化语义上与银河具有一定相似性。

第二,从形态模拟角度,明长城沿银河走向布局。

在比对明长城与银河走向时发现,明长城与银河系的走向表现出惊人的一致性(见图4),这种一致性不但体现在整体走向上,其拐弯处、分支结构也几乎相同。历史上各时期的长城形态与明长城有许多不同,明长城的起点、终点、蜿蜒走势、波折点都作了重新调整,而这些调整却使明长城的外形与银河系的固有形态相一致(见图5)。

从建造的角度,明长城与其他时期长城的修

建过程略显不同。在修建长城之初,明廷已推翻了蒙古政权,实现了全国统一。尽管边防战事不断,但国内已经开始大面积的兴复工作。建造长城是兴复工作的重要内容,如何合理规划并保证长治久安是明廷在建造长城前必须思考的,这使得明长城并非在原长城基址上的“重建”,而是重新规划后的“再建”,由此设置了九边重镇。因此我们有理由相信在最初的规划中,设计者将银河象征纳入到长城设计中的假设。

2、明长城的重镇与天上明星位置相对

明长城沿线的一些重镇与银河系个别亮星的位置相一致(见图4)。每到夏季,银河系中部的天津四、牛郎(河鼓二)、织女三星在周天中最亮,即使在城市灯红酒绿之夜也可肉眼相见,形成了著名的“夏季大三角”现象。对于这三颗亮星史书上有数不尽的语言在赞美,还有凄婉的故事与之相连,故此它们在中国的天文史上享有重要地位。这些特殊的亮星与重镇不但在位置上相对应,在文化寓意上也表现出相似性,表现如下:

(1)大同市对位天津四

大同府对应着天津四这颗明星。大同北据元蒙,地处西域与中原的交同要塞,明初被列为九边重镇之一,有“大同士马甲天下”之说,大将军徐达镇守于此。朱元璋在洪武二十四年(公元1391年)改封他的第十三子豫王朱桂为代王,坐镇大同(封藩于大同),可见大同的地位不一般。天津四是全天第19亮星,在银河中部的渡口之处,我国古代把天津四所在的星座天鹅座看成渡船,具有轮渡之意,因而有“天津”这个名字。由于大同是蒙古通往晋冀鲁豫的咽喉要道,也有隘口、交通要道之意。无论从天津四的明亮程度和显赫的咽喉位置来讲,它都与大同十分接近。

(2)宣化市对位织女星

宣化市于1394年在原宣德府的基础上扩建为宣府,明朱元璋次子朱穗受封谷王,就藩宣府,宣府由此成为重要的边防重地。《说文》:“宣,天子宣室也”可知宣府意为皇家宫室。朱元璋之所以将“宣德府”改为“宣府”,并将皇子朱穗派封于此,源于在对宣府的整体规划上体现了“皇家”二字。与此意义相同,织女星正为天帝之子“织女”之宫室。以天子之“宣府”对位天帝之子的“织女星”应该说有足够的理由。

(3)北京城对位牛郎星(河鼓二)

明朝的北京城无疑是在北方防御战线上最重要的城市,从拥有重兵的燕王朱棣的藩府再到后来的国都,它都是最重要的城市之一。牛郎星不但是排名全天第十二的明星,在我国古代的星象术数学领域又是很重要的天象星。《说文解字》中说:“物,万物也;牛为大物,天地之数起于牵牛,故从牛,勿声。”古人认为,日月起于牵牛星,从牵牛星左转,止于北斗。日月起于此,则天地间一切术数皆起于此。因此,天地万物之“物”的部首从牛。北京意味着万物之中心,一切事物从此衍生并发展,有着同心脏一样重要的地位。于是把重要的北京城与牵牛星相对位规划便可知其原因了。

(4)山海关对位心宿二

山海关是在明朝洪武十四年(公元1381年)由中山王徐达所创建。山海关有着特殊的地理位置和文化背景,它锁住海陆交通口,是万里长城之源,亦是万里长龙之“龙首”。龙首及龙头是皇帝的象征,代表着尊贵和显赫。另外,山海关属于秦皇岛辖区,秦始皇多次驻跸于此成为佳话。《大清一统志永平府临榆县》中记载:“秦皇岛,在临榆县西南二十五里,人海一里,四面皆水。相传秦始皇尝驻跸于此。”秦始皇是统一中国历史上最伟大的帝王之一,亦是秦长城的集大成者,与之相关的山海关和秦皇岛成为帝王的代名词。居于以上两种原因,山海关暗示着“龙首”与“帝居”的帝王之意。与之相对应的是天蝎座的心宿二。心宿有三颗星,分别代表了皇帝和皇子。心宿二居中,古时又叫大火,属东方苍龙七宿的心宿,是帝王的象征。心宿二为夏季第一个月应候之星宿,常用来论述“中央支配四方”。山海关与此相对,皇帝统筹天下之意。

(5)千百军堡对应闪闪明星

如果做进一步考证会发现,长城周边上百千个军堡、营寨、关口等或许与天体星辰是对应设置的(见图6)。这些布于不同时期的战争产物体现了中国古代传统文化的深厚内涵。目前已知建于隋末山西张壁古堡就是与天文结合紧密的最好例证,其古堡外围堡墙、堡内东面三口水井、西面八口水井、南斗六星槐、北斗七星槐、奎星楼、真武庙、张壁村村名来历、德星聚门、联辉门、金墓等均显示出与天文学的重要关联。作为军事文化产物的长城堡寨,也有可能在某些或大部分建筑中将建筑设计与天文科技相结合。由于数量众多,工程浩大,笔者未能一一考证,希望日后能有所进展。

四、结语

中国古代建筑无论从外部形体还是内部空间都深受古代宇宙观的影响,长城作为中国历史上最伟大的建筑工程之一也不例外。自周朝末年开始,人们修建长城时尽管主要出于防御目的,但受中国传统文化的制约与影响,长城通过形体变化和文化象征等手法使其与象天法地、星象论、宿命论等天文思想相结合,使长城因特殊的形体和所富含的象征含义而备受人们尊重。秦南段长城与咸阳、渭水相结合,在形体上形成了中国古代天宫形态;而明长城则循银河之走向进行宏大的银河系布图,体现了中国传统宇宙观在建筑工程方面的深刻影响。

天文学论文 篇7

本学期我选修了天文学概论这门课程,通过这十周课程的学习,我收获了很多有关天文学方面的知识,也有了不少感想。

还未上学的时候,我就喜欢看各类的百科全书,其中对天文方面的书最感兴趣。1997年第一次来北京,我参观了天文馆和古观象台,现在仍然记得在古观象台通过望远镜观察太阳的景象,可以说,我与天文学自小就结下了不解之缘。上了中学以后,具备了一定的科学知识,从物理方面对天文学又有了更深入的了解,清楚了诸如背景辐射,红移蓝移等一些专业概念,也发掘出了天文知识中更神奇的一面,激发了我探索天文奥秘的兴趣。

这学期的天文学概论课程中,来自北京天文馆的老师们为我们系统的总结了天文学中最基本的一些知识,诸如星座,彗星,行星与恒星以及关于观察天文现象的一些常识,这些知识对于天文学走进我们的日常生活中起着关键作用。 宇宙中的天体,近到月球,远到银河系,都对地球产生着直接或间接的影响,进而影响着人类活动。其中,太阳系作为地球所在的宇宙环境,太阳这颗恒星又深深的影响这地球的各项物理指标与地球上生物的生命活动。因此,天文学与我们的生活息息相关。作为非物理系的学生,我们对天文的了解也许不会那么深入,所以本课程为我们提供了一个普及天文知识的平台,为我们了解基本的天文知识提供了一个绝佳的机会。

天文学知识中,星座知识是一个重要组成部分。古代的东西方都对星座有着不同方面较为深入的研究。尽管现代科学已经否认了诸如占星术这类的研究,但是星座对于我们了解宇宙依然有着重要的意义。星座可以为我们指明方向,便于野外活动的人们在晴朗的夜晚辨别位置,同时可以为人们更好的定位天体以及相关的天文现象,从而更好的研究天体。

对于人类来说,天文现象不仅受到科学家的关注,还有许许多多天文爱好者的喜爱。天文现象不仅指诸如日月食,流星雨这样可供天文爱好者观看的现象,也有诸如太阳风这类影响人类活动的现象。而作为可供观察的现象来说,基本的天文设备是必不可少的。望远镜作为观察天文现象最简单最直接的工具,受到了

天文爱好者们很大关注。因此如何选取望远镜以观察不同的天文现象,也成为了天文学知识中必不可少的一部分。

通过学习本课程,我对天文知识有了一个更加系统的了解,同时学到了很多观察天象的经验及技术,激起了我更多的参与到有关天文学方面活动的兴趣。同时,各位老师生动的讲解也给我留下了深刻的印象,丰富的图片以及专业的讲解也让我受益匪浅。

作为新世纪的大学生,拥有丰富的知识储备是成为社会所要求的新型人才的关键。而天文学知识不仅丰富了我们的知识,更培养了一种爱好,让我们的人生更加丰富。同时,探索宇宙不仅对于整个人类的进步有着深远意义,对于个人,思考宇宙与人生更能让我们的胸襟开阔,思维活跃,成为更有深度的青年。

感谢天文学概论这门课程,感谢各位老师的辛苦准备与精彩讲解。也希望本课程能为我们提供一些参观北京天文馆或其他有关天文的博物馆或历史古迹的活动,让我们能够更全面的了解天文学知识,培养更多的天文兴趣。

特别说明:本网站内容都来源于互联网,供浏览者学习、欣赏,使用原则非商业性或非盈利性用途,使用者不得侵犯本网站及相关权利人的合法权利。此外,使用者如对本网站内容用于其他用途时,须征得本网站及相关权力人的许可。

一键复制全文保存为WORD
相关文章