在平时的学习中,说到知识点,大家是不是都习惯性的重视?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。哪些才是我们真正需要的知识点呢?这次为您整理了五年级数学上册知识点【精选4篇】,希望能够帮助到大家。
1、公式:
(1)长方形:
周长=(长+宽)×2字母公式:C=(a+b)×2
长=周长÷2—宽字母公式:a=C÷2—b
宽=周长÷2—长字母公式:b=C÷2—a
面积=长×宽字母公式:S=ab
(2)正方形:
周长=边长×4字母公式:C=4a
面积=边长×边长字母公式:S=a2
(3)平行四边形:
面积=底×高字母公式:S=ah
底=面积÷高字母公式:a=S÷h
高=面积÷底字母公式:h=S÷a
(4)三角形:
面积=底×高÷2字母公式:S=ah÷2
底=面积×2÷高字母公式:a=S×2÷h
高=面积×2÷底字母公式:h=S×2÷a
(5)梯形:
面积=(上底+下底)×高÷2字母公式:S=(a+b)h÷2
高=面积×2÷(上底+下底)字母公式:h=2S÷(a+b)
上底+下底=面积×2÷高字母公式:a+b=2S÷h
上底=面积×2÷高—下底字母公式:a=2S÷h—b
下底=面积×2÷高—上底字母公式:b=2S÷h—a
2、平行四边形面积公式推导:
平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积。
因为长方形面积=长×宽,所以平行四边形面积=底×高。
3、三角形面积公式推导:
两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍。
因为平行四边形面积=底×高,所以三角形面积=底×高÷2
4、梯形面积公式推导:
两个完全一样的梯形可以拼成一个平行四边形,平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍。
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
5、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
6、长方形框架拉成平行四边形,周长不变,高和面积变小。
7、组合图形:转化成已学的简单图形,通过加、减进行计算。
小学数学等式的性质
性质1:等式两边同时加上(或减去)同一个整式,等式仍然成立。
若a=b,那么a+c=b+c
性质2:等式两边同时乘或除以同一个不为0的整式,等式仍然成立。
若a=b,那么有a·c=b·c或a÷c=b÷c(c≠0)
性质3:等式具有传递性。
若a1=a2,a2=a3,a3=a4那么a1=a2=a3=a4
小学数学量的计算单位及进率归类
1、长度计量单位及进率:
千米(公里)、米、分米、厘米、毫米
1千米=1公里1千米=1000米
1米=10分米1分米=10厘米
1厘米=10毫米
2、面积计量单位及进率:
平方千米、公顷、平方米、平方分米、平方厘米
1平方千米=100公顷
1平方千米=1000000平方米
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
3、体积容积计量单位及进率:
立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升1立方厘米=1毫升
4、质量单位及进率:
吨、千克、公斤、克
1吨=1000千克
1千克=1公斤
1千克=1000克
5、时间单位及进率:
世纪、年、月、日、小时、分、秒
1世纪=100年1年=12月
1天=24小时1小时=60分
1分=60秒
(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,闰年2月29天)
1、横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。
2、用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。
3、用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。
4、写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。
5、数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。
6、一组数对只能表示一个位置。
7、表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。
【巧记位置】
表示位置有绝招
一组数据把它标
竖线为列横为行
列先行后不可调
一列一行一括号
逗号分隔标明了
在方格纸上,物体向左或向右平移,行数不变,列数等于减去或加上平移的格数;
物体向上或向下平移,列数不变,行数等于加上或减去平移的格数。
【切记】
1、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
2、作用:一组数对确定一个点的位置,经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
3、在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
4、数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线,(有一个数不确定,不能确定一个点)。
图形左右平移行数不变,图形上下平移列数不变。
练习题
一、填空。
1、竖排叫做( ),横排叫做( )。列数( )数,行数( )数。
2、用数对表示物体的位置时,应先写( )数,再写( )数。
3、亮亮在第2列,第3行的位置,可以用数对表示为( )。
4、点A(3,6)向右平移3格用数对表示是( ),向左平移2格用数对表示是( )。
5、点B(3,4)向上平移2格后用数对表示是( ),向下平移2格后用数对表示是( )。
参考答案
1、列行从左往右从下往上
2、列行
3、(2,3)
4、(6,6) (1,6)
5、(3,6) (3,2)
小学数学几何公式汇总
1、长方形的周长=(长+宽)×2:C=(a+b)×2。
2、正方形的周长=边长×4:C=4a。
3、长方形的面积=长×宽:S=ab。
4、正方形的面积=边长×边长:S=a、a=a。
5、三角形的面积=底×高÷2:S=ah÷2。
6、平行四边形的面积=底×高:S=ah。
7、梯形的面积=(上底+下底)×高÷2:S=(a+b)h÷2。
8、直径=半径×2:d=2r;半径=直径÷2:r=d÷2。
9、圆的周长=圆周率×直径=圆周率×半径×2:c=πd=2πr。
10、圆的面积=圆周率×半径×半径:s=πr2。
11、长方体的表面积=(长×宽+长×高+宽×高)×2。
12、长方体的体积=长×宽×高:V=abh。
13、正方体的表面积=棱长×棱长×6:S=6a×a。
14、正方体的体积=棱长×棱长×棱长:V=a、a、a=a。
15、圆柱的侧面积=底面圆的周长×高:S=ch。
16、圆柱的表面积=上下底面面积+侧面积:
S=2πr+2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π)+Ch。
17、圆柱的体积=底面积×高:V=ShV=πrh=π(d÷2)h=π(C÷2÷π)h。
18、圆锥的体积=底面积×高÷3:V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3。
数学比的定义知识点
(1)什么是比?
两个数相除又叫两个数的比。
(2)什么是比的前项?
比号前面的数叫比的前项。
(3)什么是比的后项?
比号后面的数叫比的后项。
(4)什么是比值?
比的前项除以后项所得的商叫比值。
(5)什么是比的基本性质?
比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
3、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
4、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。
5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
6、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232…………的循环节是32.
7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限
1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
2、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、构建空间想象力:
(1)、将两个完全一样的正方体并排放,要求想象画出以不同角度看到的样子(强调左右面是重合,故只能看见一个正方形)。
(2)、将一个正方体和圆柱体并排放,要求想象画出从不同角度看到的样子。
4、动手操作,思维拓展
用5个小正方体摆从正面看到的图形(你能摆出几种不同的方法)。(有多少种不同摆法,最少要用多少个小正方体,最多只能用多少个小正方体。)