数学学习方法(6篇)

无论是身处学校还是步入社会,学习时刻伴随着我们每一个人,掌握一定的学习方法,学习效率就会提高很多。想要找到正确的学习方法?下面是小编精心为大家整理的数学学习方法(6篇),如果对您有一些参考与帮助,请分享给最好的朋友。

数学学习方法 篇1

数学是一门基础学科,对于广大中学生来说,数学水平的高低,直接影响到物理、化学等学科的学习成绩,数学的重要地位由此可见。

步骤/方法

深刻理解概念。

概念是数学的基石,学习概念(包括定理、性质)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。

多看一些例题。

细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:

不能只看皮毛,不看内涵。我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。

要把想和看结合起来。我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。各难度层次的例题都照顾到。

看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处:例题有现成的解答,思路清晰,只需我们循着它的思路走,就会得出结论,所以我们可以看一些技巧性较强、难度较大,自己很难解决,而又不超出所学内容的例题,例如中等难度的竞赛试题。

多做练习。

要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。后者只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广,等等,还要真正掌握方法,切实做到以下三点,才能使“多做练习”真正发挥它的作用。必须熟悉各种基本题型并掌握其解法。课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌握了更多的思维方法,为做综合题奠定了一定的基础。多做综合题。综合题,由于用到的知识点较多,颇受命题人青睐。做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。

如何对待考试

学数学并非为了单纯的考试,但考试成绩基本上还是可以反映出一个人数学水平的高低、数学素质的好坏的,要想在考试中取得好的成绩,以下几个方面的素质是必不可少的。

功夫用在平时,考前不搞突击,考试中需要掌握的内容应该在平时就掌握好,考试前一天晚上不搞疲劳战,一定要休息好,这样,在考场上才能有充沛的精力,考试时还要放下包袱,驱除压力,把注意力集中在试卷上,认真分析,严密推理。

应试需要技巧,试卷发下来后,应先大致看一下题量,大概分配一下时间,做题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑,一道题目做完之后不要急于做下一道,要再看一遍,因为这时脑中思路还比较清晰,检查起来比较容易,对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处(当然是题目要求证明的),也是可以运用的,另外,对于试题必须考虑周全,特别是填空题,有的要注明取值范围,有的答案不只一个,一定要细心,不要漏掉。

考试时要冷静,有的同学一遇到不会的题目,脑袋立刻热了起来,结果,心里一着急,自己本来会的也做不出来了,这种心理状态是考不出好成绩的,我们在考试时不妨用一用自我安慰的心理:我不会的题目别人也不会,(俗称精神胜利法)或许可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。

数学学习方法 篇2

对众多初中数学学习的成功者,进入高中后数学成绩却不理想,数学学习屡受挫折,对学生弱小的心理产生巨大的创伤,加上这些同学不了解高中数学的特点,学不得法,从而造成学习成绩的整体滑坡,甚至影响学生的一生。

一、高中数学与初中数学学习特点的变化

1、数学语言在抽象程度上突变。高中的数学语言与初中有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合符号语言、逻辑运算语言、函数语言、图形语言等。高一年级的学生一开始的思维梯度太大,以至集合、映射、函数等概念难以理解,觉得离生活很远,似乎很“玄”。

2、思维方法向理性层次跃迁。高中数学思维方法与初中阶段大不相同。初中阶段,由于很多老师为学生解题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,确定了常见的思维套路。因此,形成了机械的、便于操作的定势方式。而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了更高的要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降,这是高一学生产生数学学习障碍的另一个原因。

3、知识内容的整体数量剧增。高中数学比初中数学在内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。这也使很多学习被动的、依赖心理重的高一新生感到不适应。

因此,学生要学会对知识结构进行梳理,形成板块结构,“整体集装”,如表格化使知识结构一目了然;请体会下面几种学习方法:特殊到一般的类比法,由一例到一类,由一类到多类,由多类到统一;一般到特殊的特例法,使几类问题同构于同一知识方法进行发散思维等。

二、优化学习策略,强化成就动机,科学地进行学习。高中学生不仅要想学,还必须“会学”,要讲究科学的学习方法,提高学习效率,变被动学习为主动学习,才能提高学习成绩。

1、培养良好的学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

(1)制定计划明确学习目的。合理的学习计划是推动我们主动学习和克服困难的内在动力。计划先由老师指导,再由自己完成,既要有长远打算,又要有短期安排,执行过程中严格要求自己,磨练学习意志。

(2)课前预习是取得较好学习效果的基础。课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂。

(3)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。“学然后知不足”,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。

(4)及时复习是提高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记本上,使所学的新知识由“懂”到“会”。

(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”

(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,长期坚持使所学知识由“熟”到“活”。

(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。

(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。

2、循序渐进,积极归因,防止急躁。

由于高一同学年龄较小,阅历有限,为数不少的同学容易急躁。有的同学贪多求快,囫囵吞枣,想靠几天“冲刺”一蹴而就。学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。同学们要学会积极归因,树立自信心,如:取得一点成绩及时体会成功,强化学习能力;遇到挫折及时调整学习方法、策略,更加努力改变挫折,循序渐进,争取在高考成功。

3、注意研究学科特点,寻找最佳学习方法。

数学学科担负着培养运算能力、逻辑思维能力、空间想象能力以及运用所学知识分析问题、解决问题的能力的重任。其中运算能力的培养一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行,学习中进行一题多解思考,优化运算策略;逻辑思维能力是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高,使用归类、网联策略,区别好几个概念:三段式推理、四种命题和充要条件的关系;空间想象能力对平面知识的扩充既要能钻进去,又要能跳出来,结合立体几何,体会图形、符号和文字之间的互化;运用所学知识分析问题、解决问题的能力,就是要重视应用题的转化训练,归类数学模型,体会数学语言。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理,方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。

总之,高一数学教学要立足课本,重点问题重点学,常考问题反复练,合理利用单元复习,提高学习效率和自信心。高一数学学习是学生人生的一次磨练,只要我们从实际出发制定适当目标,长计划、短安排,增强自己战胜困难的信心,数学学习自然会获得好的成绩。

实数知识点 篇3

平方根:

①如果一个正数_的平方等于A,那么这个正数_就叫做A的算术平方根。

②如果一个数_的平方等于A,那么这个数_就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:

①如果一个数_的立方等于A,那么这个数_就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

种解题思想 篇4

1、函数与方程思想

函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。

2、数形结合思想

数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。

解题类型

①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。

②“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。

③“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。

3、分类讨论思想

分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。

解决分类讨论问题的关键是化整为零,在局部讨论降低难度。

常见的类型

类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;

类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;

类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;

类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。

类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。

分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。

4、转化与化归思想

转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的核心。数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。

转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。 常见的转化方法

①直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;

②换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题;

③数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径;

④等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的;

⑤特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题;

⑥构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;

⑦坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径。

5、特殊与一般思想

用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

6、极限思想

极限思想解决问题的一般步骤为:①对于所求的未知量,先设法构思一个与它有关的变量;②确认这变量通过无限过程的结果就是所求的未知量;③构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

数学学习方法 篇5

针对高考的新形势和新特点,对于高三数学的后期备考,必须大胆变革和创新,以思想方法、解题策略和应试技巧为主线,打破知识结构的先后顺序,打破守旧的数学备考策略,真正把方法学到手,提高综合能力与应试技巧,从容走好复习备考之路。

选择题和填空题占据数学试卷的占据“半壁江山”,能否在这两类题型上获取高分,对高考数学成绩影响重大。

因此,后期定时、定量、定性地加以训练是非常必要的。要务必在选择题和填空题上加大训练力度,强化训练时间,避免“省时出错”、“超时失分”现象的发生。

回归基础重梳理

在数学高考试卷中,四道基础题基本定型,即三选一、三角数列、概率问题、立体几何,这几道大题是高考解答题得分的主阵地。

纵观往届考生,相当一部分同学考试分数低,他们丢分不是丢在难题上,而是基础题丢分太多,导致最后的考试分数不理想。

所以,在后期复习过程中,要通过疏理知识,尽量地回归基础,再现知识脉络和基本的数学方法。

每天保证做一定量的基础题,不断加大基础解答题训练力度,让考生对这一部分基础题做对、做全,得满分。

重点题型常“访谈

后期复习时,要在有限的时间内使复习获得最大的效益,必须针对重点题型进行重点复习,并且能够做到“焦点访谈”。

对于数学的函数与导数、三角函数、数列、立体几何、解析几何、统计概率等几大板块,要做到重点知识重点复习,舍得花时间和下功夫。

在复习过程中,要能够查找自己在知识或解决问题的能力上是否存在缺陷。如果发现缺陷,就要根据解决问题的方法途径重新整合相关内容,形成知识与方法的经纬图。

复习绝不是简单重复的过程

我们要找好提分的最佳“支点”——组题的质量,抓住高考的“增分点”——基础题,把握好知识的“重点”——重点模块,突破知识的“难点”——解析几何及导数问题,使复习备考不留任何“盲点”。

数学学习方法 篇6

一、好的开始是成功的一半,充分的准备是成功的前提,学生的课前准备其实也是对一节课作出的简单计划之一,首先学生要自觉准备好学习用具:课本、写字笔、学具盒、计算器,最好还要备有铅笔、草稿本、作业本、练习册,并且把这些常用的用具装在一个专用文件夹里面,以便每次能迅速的拿出来,由此也能养成自我整理收拾的习惯。

二是调整好上课的状态,每个学生都要学会自我调整身体、心理和情绪,这样有利于迅速进入上课状态,很多数学老师通过课前的情景导入,提起学生的兴致,引起学生的注意,让学生迅速进入数学思维状态。

三是知识准备,课前通过对上一节课所学内容的回忆,对数学思想方法的反思,或者是讨论有关的数学问题,总结学习经验等等,作一些知识方面的准备,这对课堂是一个重要的铺垫,可以起到"树楼梯"的作用。

很多同学利用课前几分钟进行预习,其实这种方法效果不佳,首先时间不够充分,其次精神不能集中,注意力差,甚至还会影响学生课堂上的自然思维,因为学生往往只看重结果,不大关注过程,浮光掠影,好一点的学生,看完两页纸也只是了解一下内容而已,很难对知识产生的过程有所体验,虽然学生看了一遍课文,对内容熟悉了一点,但熟悉的地方没有了风景,学生的兴趣也会随之降低。

一键复制全文保存为WORD
相关文章