目录是书籍正文前所载的目次,是揭示和报道图书的工具。高中学生若是想知道数学必修三课本的目录,问学必有师,讲习必有友,下面是可爱的小编Waner为大家找到的6篇高中数学必修三的相关文章,仅供借鉴。
棱锥
棱锥的定义:
有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥
棱锥的性质:
(1)侧棱交于一点。侧面都是三角形
(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方
正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(2)多个特殊的直角三角形
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
1.一些基本概念:
(1)向量:既有大小,又有方向的量。
(2)数量:只有大小,没有方向的量。
(3)有向线段的三要素:起点、方向、长度。
(4)零向量:长度为0的向量。
(5)单位向量:长度等于1个单位的向量。
(6)平行向量(共线向量):方向相同或相反的非零向量。
※零向量与任一向量平行。
(7)相等向量:长度相等且方向相同的向量。
2.向量加法运算:
⑴三角形法则的特点:首尾相连。
⑵平行四边形法则的特点:共起点
1、直线方程形式
一般式:Ax+By+C=0(AB≠0)
斜截式:y=kx+b(k是斜率b是x轴截距)
点斜式:y-y1=k(x-x1)(直线过定点(x1,y1))
两点式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直线过定点(x1,y1),(x2,y2))
截距式:x/a+y/b=1(a是x轴截距,b是y轴截距)
做题过程中,点斜式和斜截式用的最多(两种合占90%以上),一般式属于中间过渡形态。
在与圆及圆锥曲线结合的过程中,还要用到点到直线距离公式。
2、直线方程的局限性
各种不同形式的直线方程的局限性:
(1)点斜式和斜截式都不能表示斜率不存在的直线;
(2)两点式不能表示与坐标轴平行的直线;
(3)截距式不能表示与坐标轴平行或过原点的直线;
(4)直线方程的`一般式中系数A、B不能同时为零。
一、高中数学函数的有关概念
1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数。记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域。
注意:
函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的。那么,它的定义域是使各部分都有意义的x的值组成的函数。
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义。
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)
2.高中数学函数值域:先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3.函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象。C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。
(2)画法
A、描点法:
B、图象变换法
常用变换方法有三种
1)平移变换
2)伸缩变换
3)对称变换
4.高中数学函数区间的概念
(1)函数区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
5.映射
一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”
对于映射f:A→B来说,则应满足:
(1)函数A中的每一个元素,在函数B中都有象,并且象是的;
(2)函数A中不同的元素,在函数B中对应的象可以是同一个;
(3)不要求函数B中的每一个元素在函数A中都有原象。
6.高中数学函数之分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况。
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集。
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。
一、熟悉考试题型,合理安排做题时间
其实,不仅仅是数学考试,在参任何一门考试之前,你都要弄清楚或明确几个问题:考试一共有多长时间,总分多少,选择、填空和其他主观题各占多少分。这样,你才能够在考试中合理分配考试时间,一定要避免在不值得的地方浪费大量的时间,影响了其他题的解答。
拿安徽省的数学高考题为例,安徽省数学高考满分为150分,时间是2小时,其中选择题是12道,每题5分,共60分;填空题4道,每题是4分,共16分,解答题一共74分。所以在了解这些内容后,你一定要根据自己的情况,合理安排解题时间。
一般来说,选择题填空题最迟不宜超过40分钟,按照我们新东方培养的标准是让学生在30分钟之内高效的完成选择填空题。你必须留下一个多小时甚至更多的时间来处理后面的大题,因为大题意味着你不仅要想,还要写。
二、确保正确率,学会取舍,敢于放弃
考试时,一定要根据自己的情况进行取舍,这样做的目的是:确保会做的题目一定能够拿分,部分会做或不太会做的题目尽量多拿分,一定不可能做出的题目,尽量少投入时间甚至压根就不去想。
对于程度较好的学生,如果感觉前面的选择填空题做的很顺利,时间很充裕,在前面几道大题稳步完成的情况下,可以冲击下最后的压轴题,向高分冲击。
对于程度一般的学生,首先要保证的是前面的填空选择题大部分分值一定能够稳拿,甚至是拿满。对于大题的前几题,也尽量多花点时间,一定不要在会做的题目上无谓失分,对于大题的后两题,能做几问就做几问,即使后面的几问不去做,也一定要保证前面的分数,因为最后两题题目的性价比远远不如前面的题目实惠。
对于程度较差的学生,首先,填空选择能会做的就一定要做对,对于大题,能写几问就写几问,而最后两道压轴题如果读完之后觉得过难的话,我建议大胆放弃,不要觉得心疼,因为你即使花了很长时间去做去想也不见得能多拿几分,如果把这些时间用在选择填空题中,可能会收益更大。
这个方面,大家也不必盲目模仿别人的做法,还是那句话,要根据自己的情况,自己斟酌。
许多没有考试技巧的学生经常出现的情况是,所有的题目都想做,但所有的题目都完成的匆匆忙忙、漏洞百出,本来会做的题由于匆忙或掉以轻心而失分,而后面的一些大题即使在卷子上写了很“多”,却发现只能得到1分2分。这样的同学就是在考试的方法上很失败,我们应该吸取这样的教训。
三、快速准确,不择手段
考试中有选择题、填空题和解答题,其中选择填空题跟解答题的本质区别是它们是不需要写出解答步骤的,其实命题人已经暗示了我们,选择填空题只要你把答案做出来,无论你用什么方法都是允许的。许多不会考试的人常犯的错误和大忌,就是把每一道题都当作解答题按部就班的去解答,这样,即使你能把题目做对,但是浪费了大量不必要的时间。
其实,许多选择填空题仔细观察题目中的数字和选项,就可以排除一些选项,完全可以降低难度甚至直接选出正确答案,许多填空题往往有许多灵活的技巧,但由于这些技巧在解答题当中往往不适宜写在卷面中,所以经常被我们所忽视掉了。
比如,做选择填空题常用的巧妙方法有:排除法、数形结合、画图观察、代入验证等等方法。这些技巧和方法也是我们在平常的题目讲解中要为学生灌输和渗透的内容,我们在教学中也会逐步培养学生的这种意识。
选择填空题大家一定要重视,不仅仅是因为分值,还因为它会直接影响考生考试的心情,往往会成为一场考试成败的关键。
第一章 算法初步
1.1 算法与程序框图
1.2 基本算法语句
1.3 算法案例
阅读与思考 割圆术
小结
复习参考题
第二章 统计
2.1 随机抽样
阅读与思考 一个著名的案例
阅读与思考广告中数据的可靠性
阅读与思考 如何得到敏感性问题的诚实反应
2.2 用样本估计总体
阅读与思考 生产过程中的质量控制图
2.3 变量间的相关关系
阅读与思考 相关关系的强与弱
实习作业
小结
复习参考题
第三章 概率
3.1 随机事件的概率
阅读与思考 天气变化的认识过程
3.2 古典概型
3.3 几何概型
阅读与思考 概率与密码
小结
复习参考题
后记
高中数学必修三知识点
程序框图
程序框图的概念:
程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形;
程序框图的构成:
一个程序框图包括以下几部分:实现不同算法功能的相对应的程序框;带箭头的流程线;程序框内必要的说明文字。
设计程序框图的步骤:
第一步,用自然语言表述算法步骤;
第二步,确定每一个算法步骤所包含的逻辑结构,并用相应的程序框图表示,得到该步骤的程序框图;
第三步,将所有步骤的程序框图用流程线连接起来,并加上终端框,得到表示整个算法的程序框图。
画程序框图的规则:
(1)使用标准的框图符号;
(2)框图一般按从上到下、从左到右的方向画;
(3)除判断框外,大多数程序框图中的程序框只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;
(4)在图形符号内描述的语言要非常简练清楚。
几种重要的结构:
顺序结构、条件结构、循环结构。
语句
输入语句:
在该程序中的第1行中的INPUT语句就是输入语句。这个语句的一般格式是:
其中,“提示内容”一般是提示用户输入什么样的信息。如每次运行上述程序时,依次输入-5,-4,-3,-2,-1,0,1,2,3,4,5,计算机每次都把新输入的值赋给变量“x”,并按“x”新获得的值执行下面的语句。
输出语句:
在该程序中,第3行和第4行中的PRINT语句是输出语句。它的一般格式是:
同输入语句一样,表达式前也可以有“提示内容”。
赋值语句:
用来表明赋给某一个变量一个具体的确定值的语句。
除了输入语句,在该程序中第2行的赋值语句也可以给变量提供初值。它的一般格式是:
赋值语句中的“=”叫做赋值号。
算法语句的作用:
输入语句的作用:输入信息。
输出语句的作用:输出信息。
赋值语句的作用:先计算出赋值号右边表达式的值,然后把这个值赋给赋值号左边的变量,使该变量的值等于表达式的值。