总结是事后对某一阶段的工作或某项工作的完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析,为今后的工作提供帮助和借鉴的一种书面材料。下面是小编精心为大家整理的五年级数学下册知识总结【优秀5篇】,如果对您有一些参考与帮助,请分享给最好的朋友。
20xx-20xx学年下学期五年级数学工作总结匆匆忙忙一学期结束了,回顾这学期的教学工作,既特殊又是那么有挑战性,突如其来的疫情打乱了我们正常开学的时间,把我们的学习由校园课堂转移到了网络,停课不停学,两个月后我们又返校学习,时间是那么的紧迫,疫情无情,教育有情。下面是我的工作总结:
一、本学期的成绩
1、认真上好每一节课。
前半学期,我们是网上教学,这是一种全新应用与挑战,从开始无厘头到现在得心应手,期间经历了无数次的操练,从制作课件开始到完全投入到学生中,反复的修改教研,上网搜索,如何使用钉钉磨课试课,以及上课中教师的语言组织,刚开始我的教学语言不够严谨,重复啰嗦,在试课的过程中,其他几位老师评课,然后一句一句的教我,在这里我要再次的感谢我们五年级数学组的老师,谢谢你们耐心的帮助,指导后的语言写在一张纸上,反复的读,晚上睡觉前在心里默念一遍,课前提醒他们,课后及时批改作业,线上答疑,每天找两位学生反馈,把不会的问题再进行讲解,使每一节课让学生们的收获最大化。
这个特殊的半学期不仅学会了知识,得到了成长,每一节线上教学都是一场全年级公开课,一点点的积累让我得到了演练,无论是观念还是实际操作。
2、改进教学方法,提高学生兴趣,关注全体学生。
复学后,注重学生基础知识的教学,经常在课堂中融入开火车背公式概念,多次说,反复说,一题多讲,多人讲,一人讲多人听,遇到的问题与现实生活联系,创设情景,增加学生的兴趣,用多种手段去感染学生,在这期间使我运用这些技巧更加自然了。
3、在教研组内积极帮助各位老师解决技术问题,其实有些问题我也不会也是在网上搜索自己操作后,再教给他们;在班级管理上面,积极配合张老师的工作,认真对待学生的作业,创设良好的课堂氛围,与家长沟通,班级管理逐步达到融合。
二、本学期工作中的不足
1、教学中,教学语言有待更加精炼,课堂调控能力有待提高,奖惩制度不够完善。
2、个别学生知识掌握不够扎实,课后没有分层提高,导致学困生数量增加,重在提高中等生,怕他们掉队,却忽视了培优不差。
3、学生分析问题和运用知识的能力不足,有待培养,对学情分析不够透彻,教育教学方面知识储备不足,对后进生急于求成,对他们的教育比较简单,培优补差不足。
4、学生的学习习惯有待提高,要加强习惯的要求与指导,要调动学习学生学习的主观能动性。
5、教育经验不足,教学方法没有多样化。
三、今后努力的方向。
1、博览群书,从中汲取教学相关的精华内容,及时了解本学科本行业的新知识新情况,重视学习,不断学习,提升自身的水平,常听课取长补短,认真钻研教材。
2、后进生转化要讲究方法,反复抓,要有耐心爱心和信心,在课堂上多鼓励他们交流,精准扶贫,严慈相济。
3、重新反思课堂的教学本质,在今后传授知识的过程中,必须关注学生的发展,在教学设计和组织课堂的教学时,要思考如何让每个学生乐意学、学会学、善于学。
4、创设学生喜欢的、民主的、平型的课堂,充分调动学生的积极性,调控教学进程,引导学生去思考,操作去解决。
5、我加强反思,自我成长,行动前反思,行动中反思,教学后反思,不断更新教育观念教学方法,改善教学行为,提高教学水平,不断在反思中改进自己的教学工作。
6、加强口算教育练习,注重培养方法抓基础。
7、对待任何一件事情,脚踏实地,不要惧怕,勇于尝试,敢于挑战,努力做一名合格的教育人。
8、积极参加教学活动,谋求丰富的教学经验。
总之,本学期工作中有了一些收获,也有一些缺憾,在今后的工作中,我会不断的反思,不断创新,使不同的学生得到不同的开展,做一名合格的、值得信赖的师者。
1、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。
找因数的方法:
一个数的因数的个数是有限的,其中最小的因数是1,1的因数是它本身。
一个数的倍数的个数是无限的,最小的倍数是它本身。
2、自然数按是否是2的倍数来分:奇数偶数
奇数:不是2的倍数
偶数:是2的。倍数(0也是偶数)
最小的奇数是1,最小的偶数是0.
个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
能同时是2、3、5的倍数的的两位数是90,最小的三位数是120。
3、自然数按因数的个数来分:质数、合数、1.
质数:有且只有两个因数,1和它本身
合数:至少有三个因数,1、它本身、别的因数
1:只有1个因数。“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4。
20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97
4、分解质因数
用短除法分解质因数(一个合数写成几个质数相乘的形式)
5、公因数、公因数
几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。
用短除法求两个数或三个数的公因数(除到互质为止,把所有的除数连乘起来)
几个数的公因数只有1,就说这几个数互质。
两数互质的特殊情况:
⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;
⑷2和所有奇数互质;⑸质数与比它小的合数互质;
6、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较小的数就是它们的公因数;
较大的数就是它们的最小公倍数。
如果两数互质时,那么1就是它们的公因数
它们的积就是它们的最小公倍数。
小学数学四大领域主要内容
数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;
图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;
统计与概率:收集、整理和描述数据,处理数据;
实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。
数学做计算题型时需要注意什么
(1)认真读题,仔细审题;
(2)在计算一般算式时,得数的末尾也应该写出单位名称,但不打括号。例:32千克×4=128千克;
(3)应用题在算式中要在得数后加括号,填上单位名称。
例:一筐苹果重5千克,8箱苹果重多少千克?5×8=40(千克)
在担任五年级数学科任老师的阶段,我严格要求自己,结合班级学生情况,制定教学计划,一步步完成,根据每一个学生的特点、不足进行教学,现对本学期数学教学工作作出总结,希望能够不断取得进步。
一、以课堂教学为核心。
学期初,我认真钻研了《数学课程标准》、数学教材、教参,对学期教学内容做到心中有数。学期中,着重进行单元备课,掌握每一部分知识在单元中、在整册书中的地位、作用。不但备教材备教法而且备学生,根据教材内容及学生的实际,设计课的类型,拟定合适的教学方法,思考学生怎样学,学生将会产生什么疑难,该怎样解决。在备课本中体现教师的引导,学生的主动学习教程。充分理解课后习题的作用,设计好练习。
创设各种情境,激发学生思考。
在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的自主作用,让学生学得容易,学得轻松,学得愉快,注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。相信学生的能力大胆地放手让学生探究,动手,动口,动脑。针对教学重、难点选择学生的探究结果,学生进行比较,交流讨论,从中掌握知识,培养能力。有意识地通过生活、实例、活动、游戏等形式引入新知识点,让学生感受数学知识在日常生活中处处存在。并通过学生的亲身感受、操作、实践、体验、讨论等方法,创设情景来激发学生的学习兴趣,实现了学生感知知识形成的过程。让学生进行不同坡度练习,不同层次的题目,巩固知识,形成能力,发展思维。最后,尽量让学生自己小结学到的知识以及方法。现在学生普遍对数学感兴趣,参与性高,这学好数学迈出了坚实的一步。具体方法如下:
1、加强口算的学习。通过每天10分钟的口算练习,采用多种形式,让学生通过他们自己喜爱的方式来练习,还不定期的举行抢答比赛,激发他们的积极性。
2、解决问题一直以来都是学生学习的一大难点,针对这一情况,我让学生多练、多想、多问,从量到质,逐步提高学生分析问题的能力,学生再也不像以前那样惧怕解决问题。
3、增加实践活动,培养学生体会数学应用数学的意识。设计一些与学生生活联系比较紧密而又蕴涵的数学问题的活动。使学生通过地活动中解决问题,感受、体验、理解数学,又有利于培养学生从日常生活中发现数学问题的意识。
努力建构知识网络。
每单元整理复习形成知识链,一学期对整册书进行整理复习。学生经历了教材由"薄"变"厚",再变"薄"的过程,既形成了知识网,又学到了方法,容易产生学习迁移,给学生的创新、实践提供了可能。
二、适时给自己"充电"
1、在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听其他老师的课,做到边听边思考,学习别人的优点,克服自己的不足。
2、阅读一定的教学理论着作,如《小学数学基本概念解读》、《小学数学思想方法》、《名师落实艺术》等等,通过理论知识的学习,填补自身的不足,提升自身的修养。
三、认真批改作业。
从一开始,我就对学生作业严格要求,布置作业做到有布置有检查;有针对性,有层次性。要求学生要认真做作业,尽量做到不出错,提高正确率。将他们在作业过程出现的问题做出分类总结,进行透切的讲评,并针对有关情况及时改进教学方法,做到有的放矢。
四、注重对后进生的辅导。
对后进生的辅导,并不限于学习知识的辅导,更重要的是学习思想的辅导,要提高后进生的成绩,首先要解决他们心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情,而是充满乐趣的。从而自觉的把身心投放到学习是去。对后进生分层要求,在教学中注意降低难度、放缓坡度,允许他们采用自己的方法慢速度学习。注重他们的学习过程。在教学中逐步培养他们的学习兴趣,提高他们的学习自信心,对学生的回答采取"扬弃"的态度,从而打破了上课发言死气沉沉的局面,这样,使学生敢于回答问题,乐于思考,会学得轻松,进步也快,兴趣和求知欲也会随之增加。
五、存在问题
1、学生没有一种好的学习习惯,没有创造出良好的学习氛围。
2、学困生的转化还没有到位,个别学困生没有转化好。
3、基础知识掌握不牢固,计算的准确率太低,理解能力差,知识学得较死,没有举一反三的能力。
4、自己的知识面窄,教学理论掌握的少,数学方面的书看的少,需要找到一种好的、适合自己的、适合本班学生的、符合当前的教学。
作为数学教学,我需要不断拓展自己的思维,让课堂变得更加生动有趣,认真钻研教材,虚心接受别人的经验,力求提高自己的教学水平,付出总会有收获,希望一切会变得更好。
知识点概念总结
1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
2.小数乘法法则
先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
3.小数除法
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
4.除数是整数的小数除法计算法则
先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
5.除数是小数的除法计算法则
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
6.积的近似数:
四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。
7.数的互化
(1)小数化成分数
原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
(2)分数化成小数
用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
(3)化有限小数
一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
(4)小数化成百分数
只要把小数点向右移动两位,同时在后面添上百分号。
(5)百分数化成小数
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
(6)分数化成百分数
通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(7)百分数化成小数
先把百分数改写成分数,能约分的要约成最简分数。
8.小数的分类
(1)有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
(2)无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
(3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
(4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……;一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的。循环节。 例如: 3.99 ……的循环节是“ 9 ” ,0.5454 ……的循环节是“ 54 ” 。
9. 循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。
10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。
11.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)
方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时 ,方程才成立 。
12.方程的解
使方程左右两边相等的未知数的值,叫做方程的解。
如果两个方程的解相同,那么这两个方程叫做同解方程。
13.方程的同解原理:
(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
14.解方程:解方程,求方程的解的过程叫做解方程。
15.列方程解应用题的意义:
用方程式去解答应用题求得应用题的未知量的方法。
16.列方程解答应用题的步骤
(1)弄清题意,确定未知数并用x表示;
(2)找出题中的数量之间的相等关系;
(3)列方程,解方程;
(4)检查或验算,写出答案。
17.列方程解应用题的方法
(1)综合法
先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。
(2)分析法
先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
18.列方程解应用题的范围 :小学范围内常用方程解的应用题:
(1)一般应用题;
(2)和倍、差倍问题;
(3)几何形体的周长、面积、体积计算;
(4)分数、百分数应用题;
(5)比和比例应用题。
19.平行四边形的面积公式:
底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边=ah
20.三角形面积公式:
S△=1/2*ah(a是三角形的底,h是底所对应的高)
21.梯形面积公式
(1)梯形的面积公式:(上底+下底)×高÷2。
用字母表示:(a+b)×h÷2
(2)另一计算公式: 中位线×高
用字母表示:l·h
(3)对角线互相垂直的梯形:对角线×对角线÷2
扩展资料
1.小数分类
(1)纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
(2)带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。
(3)纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111…… 0.5656 ……
(4)混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222…… 0.03333……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。
2.循环节的表示方法
小数化分数分成两类。
一类:纯循环小数化分数,循环节做分子;连写几个九作分母,循环节有几位写几个九。
另一类:混循环小数化分数(问题就是这类的),小数部分减去不循环的数字作分子;连写几个9再紧接着连写几个0作分母,循环节是几个数就写几个9,不循环(小数部分)的数是几个就写几个0。
3.平行四边形的面积
平行四边形的面积等于两组邻边的积乘以夹角的正弦值;
4.三角形的面积
(1)S△=1/2*ah(a是三角形的底,h是底所对应的高)
(2)S△=1/2acsinB=1/2bcsinA=1/2absinC(三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数)
(3)S△=abc/(4R) (R是外接圆半径)
(4)S△=[(a+b+c)r]/2 (r是内切圆半径)
(5)S△=c2sinAsinB/2sin(A+B)
整除的算式的特征:
1、除数、被除数都是自然数,且除数不为0。
2、被除数除以除数,商是自然数而没有余数。
例:15能被5整除,我们就说,15是5的
倍数,5是15的因数。
知识点一:因数
问题一:一个长方形,它的面积是12平方厘米,如果长方形的长和宽都是整数,请同学们猜一猜这个长方形的长和宽各是多少?
所以12的因数有:
注意:1、在说因数(或倍数)时,必须说明谁是谁的因数(或倍数)。不能单独说谁是因数(或倍数)。2、因数和倍数不能单独存在。
例1 18的因数有那些?
方法一:想18可以有哪两个数相乘得到18=1×18 18=2×9 18=3×6
方法二:根据整除的意义得到
18÷1=18 18÷2=9 18÷3=6
所以18的因数有:
表示方法:
1、列举法︰12的因数有:1,2,3,4,6,12
2、用集合表示︰
练习1:30的因数有哪些?36呢?
30的因数有:
36的因数有:
观察:18的最小因数是(),的因数是()
30的最小因数是(),的因数是)
36的最小因数是(),的因数是()
一个数的因数的个数是有限的,一个数的最小因数是(),因数是()
你要知道:
(1)1的因数只有1,的因数和最小的因数都是它本身。
(2)除1以外的整数,至少有两个因数。
(3)任何自然数都有因数1。
知识点二:倍数
问题二:2的倍数有哪些?
2的倍数有:2,4,6,8 …
例1、小蜗牛找倍数(找出3的倍数)。
练习3、5的倍数有哪些?7的倍数呢?
5的倍数:
7的倍数:
一个数的倍数的个数是(),一个数的最小的倍数是(),()的倍数。
用字母表示因数与倍数的关系:a — b = c(a、b、c都是不为0的整数)a、b都是c的因数,c是a和b的倍数。因数和倍数是相互依存的。
说一说:在0、3、4、7、15、16、77、31、62中择两个数,说一说谁是谁的因数?谁是谁的倍数?
1、根据算式:4×8=32
说一说,谁是谁的因数?谁是的倍数?
2、根据算式:63÷7=9
说一说,谁是谁的因数?谁是的倍数?
3、判断:1.2÷0.2=6我们能说0.2和6是1.2的因数;1.2是0.2的倍数,也是6的倍数吗?为什么?
知识点三:质数和合数
1、自然数按因数的个数来分:质数、合数、1、0四类。
(1)质数(或素数):只有1和它本身两个因数。
(2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
(3)1:只有1个因数。“1”既不是质数,也不是合数。
注:
①最小的质数是2,最小的合数是4,连续的两个质数是2、3。
②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
③ 20以内的质数:有8个()
④ 100以内的质数有25个:()
关系:奇数×奇数=奇数质数×质数=合数
2、常见、最小
A的最小因数是:1;最小的奇数是:1;
A的因数是:本身;最小的偶数是:0;
A的最小倍数是:本身;最小的质数是:2;
最小的自然数是:0;最小的合数是:4;
3、分解质因数:把一个合数分解成多个质数相乘的形式。树状图
例:
分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。把36分解质因数是:36=2×2×3×3
4、用短除法分解质因数(一个合数写成几个质数相乘的形式)。例:
分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。具体步骤是:
5、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7
两个合数的互质数:8和9
一质一合的互质数:7和8
6、两数互质的特殊情况:
⑴1和任何自然数互质;
⑵相邻两个自然数互质;
⑶两个质数一定互质;⑷2和所有奇数互质;
⑸质数与比它小的合数互质;
三、经验之谈:
书写分解质因数的结果时不能把质因数相乘写在等号左边,把合数写在右边,比如36=2×2×3×3就不能写成2×2×3×3=36;
短除法是除法一种简化,利用短除法分解质因数时,除数和商都不能是1,因为1不是质数
图形的变换
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。