关于毕业论文提纲格式(汇编3篇)

关于毕业论文提纲格式(精选3篇)

关于毕业论文提纲格式 篇1

摘要 2-3

ABSTRACT 3

1 绪论 7-18

1.1 本课题研究背景 7

1.2 电能质量的定义 7-8

1.3 电能质量的国家标准 8-13

1.4 电能质量评估的意义 13

1.5 选矿厂供电系统电能质量评估的意义 13

1.6 电能质量参数的评估理论及算法 13-17

1.6.1 时域分析方法 13-14

1.6.2 频域分析方法 14

1.6.3 基于数学变换分析方法 14

1.6.4 傅立叶变换 14-15

1.6.5 人工智能技术 15-17

1.7 本课题主要研究工作 17-18

2 选矿厂供电系统 18-27

2.1 选矿厂供电系统 18-24

2.1.1 磨浮 1 车间供电系统 18-20

2.1.2 磨浮 2 车间(万吨车间)供电系统 20-22

2.1.3 中细碎车间变电所供电 22-24

2.2 选矿厂供电系统电能质量实时监测 24-27

3 电能质量监测 27-37

3.1 磨浮车间用电电能质量监测分析 27-30

3.2 选矿厂存在的电能质量问题 30-36

3.2.1 万吨车间 1 30-34

3.2.2 万吨车间 2 34-36

3.3 本章小结 36-37

4 电能质量问题分析 37-50

4.1 电机起动引起的电压降 37-39

4.1.1 电动机起动引起的电压降的估算 37-39

4.2 电容器组引起电压升高 39-41

4.3 无功功率传输对电压水平的影响 41-42

4.4 系统中的主要谐波源 42-46

4.4.1 变压器产生的谐波 42-45

4.4.2 变频器产生的谐波 45-46

4.5 补偿装置 SVG 和 APF 的基本原理 46-49

4.5.1 SVG 基本原理 46-48

4.5.2 APF 基本原理 48-49

4.6 本章小结 49-50

5 对选矿厂系统仿真分析 50-62

5.1 仿真分析 50-57

5.1.1 电机起动引起的电压降落 50-53

5.1.2 补偿电容器引起的母线电压上升 53-55

5.1.3 SVG 投入无功功率 55-56

5.1.4 APF 对 400V 线路进行谐波补偿 56-57

5.2 补偿电容与 APF 仿真模型分析 57-61

5.2.1 补偿电容器引起的母线电压上升 57-58

5.2.2 APF 对 400V 线路进行谐波补偿 58-59

5.2.3 SVG 对无功功率的补偿 59-61

5.3 本章小结 61-62

6 选矿厂电能质量评估情况及建议 62-63

6.1、总结与建议 62-63

6.1.1、总结 62

6.1.2、建议 62-63

参考文献63-65

致谢 65

关于毕业论文提纲格式 篇2

摘要 4-6

Abstract 6-7

致谢 8-11

第1章 绪论 11-17

1.1 研究的缘起 11

1.2 文献综述 11-16

1.2.1 国外读写结合研究现状 12

1.2.2 国内读写结合研究现状 12-14

1.2.3 图式理论研究现状 14-16

1.3 研究思路和研究方法 16-17

第2章 《教程》的理论分析 17-28

2.1 《教程》基本情况 17-18

2.2 基于图式理论的《教程》分析 18-28

2.2.1 内容图式 19-22

2.2.2 形式图式 22-25

2.2.3 语言图式 25-28

第3章 《教程》的应用分析 28-43

3.1 教师对教材的使用调查 28-30

3.2 学生对教材的使用调查 30-31

3.3 对《教程》的修改建议 31-36

3.3.1 激活原有图式 31

3.3.2 建构新的图式 31-36

3.4 《教程》的教案设计 36-43

第4章 结语 43-44

参考文献 44-47

附录 47-58

关于毕业论文提纲格式 篇3

摘要 8-9

ABSTRACT 9

第一章 绪论 10-16

1.1 课题背景 10-11

1.2 在线安全稳定分析发展、应用现状 11-15

1.3 本文的主要工作 15-16

第二章 在线分析基础数据 16-31

2.1 在线数据与离线数据 16-17

2.2 在线数据的构成与构建过程 17-19

2.3 状态估计 19-24

2.3.1 状态估计功能 19-20

2.3.2 网络拓扑分析 20-21

2.3.3 量测系统分析 21

2.3.4 量测预校验 21-22

2.3.5 状态估计计算 22-23

2.3.6 不良数据检测及辨识 23-24

2.3.7 参数估计 24

2.4 在线数据整合 24-31

2.4.1 整合目标 25

2.4.2 整合难点 25-26

2.4.3 方案建立 26-27

2.4.4 基本技术 27

2.4.5 在线数据整合方案 27-31

第三章 在线安全稳定分析技术 31-53

3.1 在线静态安全分析 31-34

3.1.1 基本概念 31

3.1.2 关键参数 31

3.1.3 核心算法 31-33

3.1.4 核心指标 33-34

3.2 在线静态稳定分析 34-35

3.2.1 基本概念 34

3.2.2 关键参数 34

3.2.3 核心算法 34-35

3.2.4 核心指标 35

3.3 在线短路电流分析 35-39

3.3.1 基本概念 35

3.3.2 关键参数 35

3.3.3 核心算法 35-39

3.3.4 核心指标 39

3.4 在线小干扰分析 39-43

3.4.1 基本概念 39-40

3.4.2 关键参数 40

3.4.3 核心算法 40-42

3.4.4 核心指标 42-43

3.5 在线电压稳定分析 43-46

3.5.1 基本概念 43

3.5.2 关键参数 43-44

3.5.3 核心算法 44-45

3.5.4 核心指标 45-46

3.6 在线暂态稳定分析 46-50

3.6.1 基本概念 46

3.6.2 关键参数 46-47

3.6.3 核心算法 47-50

3.6.4 核心指标 50

3.7 在线稳定裕度评估 50-53

3.7.1 基本概念 50-51

3.7.2 关键参数 51

3.7.3 核心算法 51-52

3.7.4 核心指标 52-53

第四章 在线安全稳定分析系统 53-60

4.1 系统总体情况及架构 53-55

4.2 模块功能 55-60

4.2.1 数据整合 55

4.2.2 静态安全分析 55-56

4.2.3 暂态稳定分析 56

4.2.4 电压稳定分析 56-57

4.2.5 小扰动稳定分析 57-58

4.2.6 短路电流分析 58

4.2.7 稳定裕度评估 58-60

第五章 在线安全稳定分析应用实例 60-69

5.1 同塔双回线路掉闸应用实例 60-64

5.1.1 事故前运行方式 60-61

5.1.2 事故发生及事故处理过程 61

5.1.3 事故后分析计算及结论 61-64

5.2 500kV主变掉闸应用实例 64-69

5.2.1 事故前运行方式 64-65

5.2.2 事故发生及事故处理过程 65

5.2.3 事故后分析计算及结论 65-69

第六章 总结 69-71

6.1 总结 69-70

6.2 应用效益 70-71

参考文献 71-75

致谢 75-76

附表 76

一键复制全文保存为WORD
相关文章